Posts Tagged ‘business aviation’

How Far is Far Enough?

Monday, March 9th, 2015

There’s an old saying about fuel: unless you’re on fire, you can never have enough. I wonder, is the same thing true of an aircraft’s range?

With a 7,000 nautical mile reach, Gulfstream’s G650 was already an ultra-long range business jet before the ‘ER’ edition tacked on an additional 500 nm of capability. The G-series flagship recently set two records while flying around the world with a single fuel stop.

To be fair, Steve Wynn’s G650 flew eastbound from New York to Beijing and continued east to Savannah, Georgia for a total distance of 13,511 nautical miles. While that may satisfy the practical definition of the phrase, it doesn’t come close to the actual 21,600 nm equatorial circumference of the planet. Lest you think I’m picking nits, consider that you could fly “around the world” near the north pole with a Cessna 172 and do it on a single tank of gas. Get close enough to the pole and you could walk around the world in a few seconds. Doing so wouldn’t necessarily make you Superman.

Clearly, some kind of definition would be helpful. For the purposes of aeronautical records, a circumnavigation is considered by the Fédération Aéronautique Internationale to be a flight which a) covers a distance no less than the length of the Tropic of Cancer, b) crosses all meridians, and c) begins and ends at the same airport. In other words, the FAI’s criteria requires a minimum flight of 19,853 nautical miles, or 6,342 further than Wynn’s G650 traveled.

This is not to denigrate the G650’s achievement. They flew a long way, and did it at a high rate of speed — Mach 0.87. The city pair records it set on this trip will probably stand for a long time. But I can’t help but wonder, how much further could a person want to go? How much range is “far enough”? Since the globe is 21,600 nautical miles in circumference, one might be tempted to assume the answer is 10,800 nm. If airplanes were used to travel between random geographic points, that might make sense, but they’re using to travel between airports. Usually the ones near major cities.

One of the longest city pairs is Rio de Janeiro to Tokyo, about 10,000 nautical miles. Auckland to London is about the same. If that was the typical mission, the G650ER’s 7,500 nm range could still be improved upon by a longer-range airplane. But for the vast majority of pairings on our little blue marble, the ER can already do it on a single tank.

It seems to me that eking out those final miles may come at a steep price. Beyond the monetary cost, it would involve heavier weights, longer wings, the requirement for additional crewmembers, and so on. Even if the only thing needed was greater efficiency via winglets, incremental engine improvements, aerodynamic cleanup, and so on, it would still require vital resources like time and money — limitations every bit as real as the ones we face with smaller aircraft.

So should we expect to see longer range airplanes being developed, or will future emphasis be placed on speed and comfort? As always, the market will dictate the answer. Nobody develops a $60 million conveyance without extensive consultation with their client base. It’s worth noting that the G650 is such an exceptional product because it made significant strides in speed, range, and comfort simultaneously. That’s rare. By contrast, the upcoming G500 and G600 don’t break new ground in terms of speed or range, but do provide improved technology and most of the 650’s hallmark capabilities at a lower price point.

I’ve gone on record as predicting that the next big jump will be an increase in cruise speed — namely, a supersonic business jet. At the end of the day, that’s the ultimate goal: compressing time. Eliminating fuel stops is certainly one way to do it, but that only takes you so far. What comes next when the need to refuel is gone? Once the sound barrier is broken, the race will really be on. You’ll see officially recognized circumnavigations occurring on a much faster and more frequent basis, and business aviation’s value will rise exponentially.

Flying Backward

Wednesday, February 11th, 2015

“Aviation in itself is not inherently dangerous. But to an even greater degree than the sea, it is terribly unforgiving of any carelessness, incapacity or neglect.”

Aviation insurance pioneer A. G. Lamplugh uttered that oft-quoted phrase more than eighty years ago, and it’s as valid today as it was back then. Like Newton’s Laws of Physics, it’s one of the basic, unchanging truths about flying: certain things simply must be done properly if we’re to avoid disaster in the air. One of the best examples would be dealing with a low-altitude engine failure.

Last week’s TransAsia ATR-72 accident is a potent reminder of this aphorism. While we don’t know the cause yet and probably won’t know the whole story for a year or more, it got me thinking about how oddly things are done in aviation sometimes. For example, airline pilots move “up” the food chain from turboprops to jets. If safety is the paramount concern, that’s backwards. Shouldn’t the most experienced pilots should be exercising their skills on the most challenging aircraft rather than the least?

While jets certainly have their pitfalls and perils, a low-altitude engine failure is generally more challenging in a turboprop. The dead engine’s propeller creates tremendous drag until it’s properly secured. Many multi-engine turboprops are equipped with mechanisms to automatically feather the offending prop, but if that system doesn’t function properly, has been deferred, or simply doesn’t exist, the pilot is faced with six levers in close proximity, only one of which will do the trick. It’s easy to pull the wrong one.

Worse yet, if the craft has an autofeather system, the pilot would logically expect it to function as advertised. He or she would have to first detect the lack of feathering, then run the identify-verify-feather drill. Unlike training scenarios, there’s a major surprise factor at play as well. In a simulator, is anyone really surprised when the engine quits? Of course not. In the real world, pilots make thousands of flights where a powerplant doesn’t fail. As much as you tell yourself with each takeoff that “this could be the one”, empirical evidence in the form of a pilot’s own experience suggests against it. That makes preparation for a low-altitude emergency a constant battle with oneself. Are we always honest about how we’re doing in that fight? Probably not.

When I flew ex-military U-21A turboprops for a government contractor, we did all our training in the actual aircraft. I’ll never forget how marginal the aircraft’s performance was, even when engine failures were handled properly and expediently. We would fly a single-engine approach into Catalina Airport, where the missed approach procedure takes you toward the center of the island and some fairly high terrain. On one training flight the autofeather system initially worked as advertised, but then started to slowly unfeather.

Turboprop flying also comes with increased risk exposure due to the flight profile. A jet pilot might fly one or two legs a day versus five, six, or seven flown by the guy in the turboprop. With more legs comes an increased statistical opportunity for that engine to quit on takeoff. Turboprops also fly at lower altitudes where they tend to be in weather rather than above it.

The reciprocating twin pilot has it even worse when it comes to performance. Most of them have no guarantee of any climb performance at all on one engine, especially with the gear down, and few are equipped with automatic feathering systems. Yet that’s where we all start out.

Contrast this with engine failure in the modern jet, where the pilot need do nothing but raise the landing gear and keep the nose straight. In my aircraft, at least, we don’t even add power on the remaining engine. Unless the plane is literally on fire, we just climb straight out for a minute or two, gaining altitude and doing… nothing. No checklist to run, and only two levers in the throttle quadrant rather than six.

John Deakin described the contrast between prop and jet quite colorfully when he transitioned into the G-IV:

“If you hear a Gulfstream pilot whine about poor performance when high, hot, and heavy, please understand, he’s whining about less than 1,000 feet per minute on one engine. I sometimes feel like slapping a chokehold on, and dragging one of these guys out to the old C-46, loaded, on a hot day, and make him do an engine failure on takeoff, where he’d be lucky to get 50 feet per minute.”

There are other places where you can see this same phenomenon at work in aviation. Consider the world of flight instruction. The least experienced CFIs typically start off by teaching primary students. Again, that’s backwards. It would seem more logical to start instructors off with checkouts and endorsements for experienced pilots or commercial certificate training. Putting the best, most experienced CFIs with the neophytes might help accelerate their progress and alleviate the high student pilot drop-out rate.

The Law of Primacy — something every CFI candidate learns about — tells us that “the state of being first, often creates a strong, almost unshakable, impression. Things learned first create a strong impression in the mind that is difficult to erase. For the instructor, this means that what is taught must be right the first time.” Primary flight training literally sets the foundation of an aviator’s flying life, to say nothing of the fact that teaching primary students is one of the most difficult jobs a CFI can undertake. So why is this critical task mainly entrusted to the newest, least experienced instructors?

The answer to these questions usually comes down to money. The almighty dollar frequently plays a powerful role in explaining the unexplainable in aviation. While it would be unrealistic to deny the importance of financial concerns in defying gravity, whole sections of the aviation ecosystem run backwards and one can’t help but wonder if perhaps safety suffers because of it.

Upset Recovery Training vs. Aerobatics

Tuesday, October 28th, 2014

Upset recovery training has been all the rage over the past couple of years. A Google search of that exact phrase returns more than 24,000 results. There’s a professional association dedicated to such training. ICAO even declared aircraft upsets to be the cause of “more fatalities in scheduled commercial operations than any other category of accidents over the last ten years.”

Nevertheless, I get the impression that some folks wonder if it isn’t more of a safety fad than an intrinsic imperative. It’s hard to blame them. You can hardly open a magazine or aviation newsletter these days without seeing slick advertisements for this stuff. When I was at recurrent training a couple of months ago, CAE was offering upset recovery training to corporate jet pilots there in Dallas. “If I wanted to fly aerobatics, I’d fly aerobatics!” one aviator groused.

He didn’t ask my opinion, but if he had, I’d remind him that 99% of pilots spend 99% of their time in straight and level flight — especially when the aircraft in question is a business jet. I’m not exaggerating much when I say that even your typical Skyhawk pilot is a virtual aerobat compared to the kind of flying we do on charter and corporate trips. For one thing, passengers pay the bills and they want the smoothest, most uneventful flight possible.

In addition, these jets fly at very high altitudes – typically in the mid-40s and even as high as 51,000 feet. Bank and pitch attitudes tend to stay within a narrow band. Yaw? There shouldn’t be any. The ball stays centered, period. We aim for a level of smoothness that exceeds even that of the airlines. Passengers and catering may move about the cabin frequently during a flight, but it shouldn’t be because of anything we’re doing up front.

Fly like that for a decade or two, logging thousands and thousands of uneventful, straight-and-level hours and the thought of all-attitude flying can become – to put it mildly – uncomfortable. I’ve even seen former fighter pilots become squeamish at the thought of high bank or pitch angles after twenty years of bizjet flying.

Unfortunately, there are a wide variety of things that can land a pilot in a thoroughly dangerous attitude: wind shear, wake turbulence, autopilot failure, mechanical malfunction (hydraulic hard-overs, asymmetric spoiler or flap deployment, etc.), inattention, and last but not least, plain old pilot error. Look at recent high-profile accidents and you’ll see some surprisingly basic flying blunders from the crew. Air France 447, Colgan 3407, and Asiana 214 are just three such examples. It may not happen often, but when it does it can bite hard.

So yes, I think there is a strong need for more manual flying exposure in general, and upset recovery training in particular. This isn’t specific to jet aircraft, because some light aircraft have surpassed their turbine-powered cousins in the avionics department. I only wish the 1980’s era FMS computer in my Gulfstream was as speedy as a modern G1000 installation.

Defining the Problem

To the best of my knowledge, neither the NTSB or FAA provide a standard definition for “upset”, but much like Supreme Court Justice Potter Stewart, we pretty much know it when we see it. The term has generally come to be defined as a flight path or aircraft attitude deviating significantly from that which was intended by the pilot. Upsets have led to loss of control, aircraft damage or destruction, and more than a few fatalities.

As automation proliferates, pilots receive less hands-on experience and a gradual but significant reduction in stick-and-rudder skill begins to occur. The change is a subtle one, and that’s part of what makes it so hazardous. A recent report by the FAA PARC rulemaking workgroup cites poor stick and rudder skills as the number two risk factor facing pilots today. The simple fact is that windshear, wake turbulence, and automation failures happen.

The purpose of upset recovery training is to give pilots the tools and experience necessary to recognize and prevent impending loss of control situations. As the saying goes, an ounce of prevention is worth a pound of cure, and that’s why teaching recovery strategies from the most common upset scenarios is actually a secondary (though important) goal.

What about simulators? They’ve proven to be an excellent tool in pilot training, but even the most high fidelity Level D sims fall short when it comes to deep stalls and loss of control scenarios. For one thing, stall recovery is typically initiated at the first indication of stall, so the techniques taught in the simulator may not apply to a full aerodynamic stall. Due to the incredibly complex and unpredictable nature of post-stall aerodynamics, simulators aren’t usually programmed to accurately emulate an aircraft in a deeply stalled condition. Thus the need for in-aircraft experience to supplement simulator training.

Upset Recovery vs. Aerobatics

It’s important to note that upset recovery training may involve aerobatic maneuvering, but it does not exist to teach aerobatics. Periodically over the years, discussions on the merits of this training will cause a co-worker to broach the subject of flying an aerobatic maneuver in an airplane which is not designed and built for that purpose. This happened just the other day. Typically they’ll ask me if, as an aerobatic pilot, I would ever consider performing a barrel or aileron roll in the aircraft.

I used to just give them the short answer: “no”. But over time I’ve started explaining why I think it’s such a bad idea, even for those of us who are trained to fly such maneuvers. I won’t touch on the regulations, because I think we are all familiar with those. I’m just talking about practical considerations.

Normal planes tend to have non-symmetrical airfoils which were not designed to fly aerobatics. They feature slower roll rates, lower structural integrity under high G loads, and considerably less control authority. You might have noticed that the control surfaces on aerobatic airplanes are pretty large — they are designed that way because they’re needed to get safely into and out of aerobatic maneuvers.

That’s not to say an airplane with small control surfaces like a business jet or light GA single cannot perform aerobatics without disaster striking. Clay Lacy flies an airshow sequence in his Learjet. Duane Cole flew a Bonanza. Bob Hoover used a Shrike Commander. Sean Tucker flew an acro sequence in a Columbia (now known as the Cessna TTx). However, the margins are lower, the aerobatics are far more difficult, and pilots not experienced and prepared enough for those things are much more likely to end up hurt or dead.

Sean Tucker will tell you that the Columbia may not recover from spins of more than one or two turns. Duane Cole said the Bonanza (in which he did inverted ribbon cuts) had barely enough elevator authority for the maneuver, and it required incredible strength to hold the nose up far enough for inverted level flight. Bob Hoover tailored his performance to maneuvers the Shrike could do — he’ll tell you he avoided some aerobatic maneuvers because of the airplane’s limitations.

Knowing those limitations and how to deal with them — that’s where being an experienced professional aerobatic pilot makes the difference. And I’m sure none of those guys took flying those GA airplanes upside down lightly. A lot of planning, consideration, training and practice went into their performances.

Now, consider the aircraft condition. Any negative Gs and stuff will be flying around the cabin. Dirt from the carpet. Manuals. Items from the cargo area. Floor mats. Passengers. EFBs. Drinks. Anything in the armrest or sidewall pockets. That could be a little distracting. Items could get lodged behind the rudder pedals, hit you in the head, or worse.

If the belts aren’t tight enough, your posterior will quickly separate from the seat it’s normally attached to. And I assure you, your belts are not tight enough. Getting them that way involves cinching the lap belt down until it literally hurts. How many people fly a standard or transport category aircraft that way?

Now consider that the engine is not set up for fuel and oil flow under negative Gs. Even in airplanes specifically designed for acro, the G loads move the entire engine on the engine mount. In the Decathlon you can always see the spinner move up an inch or two when pushing a few negative Gs. Who knows what that would do with the tighter clearances between the fan and engine cowl on an airplane like the Gulfstream?

Next, let’s consider trim. The jet flies around with an electric trim system which doesn’t move all that quickly. The aircraft are typically trimmed for upright flight. That trim setting works heavily against you when inverted, and might easily reach the point where even full control deflection wouldn’t be sufficient.

I could go on, but suffice it to say that the more I learn about aerobatics, the less I would want to do them in a non-aerobatic aircraft – and certainly not a swept wing jet! Sure, if performed perfectly, you might be just fine. But any unusual attitude is going to be far more difficult — if not outright impossible — to recover from.

Dang it, Tex!

Every time someone references Tex Johnson’s famous barrel roll in the Boeing 707 prototype, I can’t help but wish he hadn’t done that. Yes, it helped sell an airplane the company had staked it’s entire future on, but aerobatic instructors have been paying the price ever since.

Aerobatic and upset recovery training: good. Experimenting with normal category airplanes: bad. Very bad.

Time is Money

Tuesday, September 2nd, 2014

One of the first things people discover about flying is that it requires an abundance of two resources: time and money. The money part is pretty obvious. Anyone who inquires about flight instruction at a local school will figure that one out before they even take their first lesson. The importance of time is a bit more nebulous.

When I began working as an instructor, I noticed that even in affluent coastal Orange County, at least one of those two assets always seemed to be in short supply. Those who had plenty of money rarely had much free time; they were financially successful because they worked such long hours. Younger pilots typically had fewer demands on their schedule, but funds were limited at best. It reminds me of Einstein’s famous mass-energy equivalence formula, E=mc2. But instead of matter and energy being interchangeable, it’s time and money. Benjamin Franklin took it a step further in a 1748 letter, concluding that “time is money”.

time_is_money2

I learned to fly during a period when both of those elements were readily available. It was a luxury I didn’t appreciate — or even recognize — at the time. It’s probably for the best, since I would have been sorely tempted to spend even more on my addiction.

After flying Part 135 for the past three years, it’s interesting to note how those same limits apply to charter customers despite being much higher up on the proverbial food chain. These restrictions are the very reason Part 91/135 business aviation exists at all.

Case in point: I recently flew a dozen employees of a large retailer around the U.S. to finalize locations for new stores. They were able to visit ten cities in four days, spending several hours working at each destination. Out of curiosity, I ran our itinerary through booking sites like Kayak, Orbitz, and Travelocity to see how a group of twelve might fare on the airlines. Would you be surprised to learn that the answer is “not well”?

Our first leg, three hours in length, would have taken twelve hours and two extra stops on the airlines and actually cost more, assuming business class seats. Some of the subsequent legs wouldn’t have been possible at all on the airlines because they simply don’t serve those destinations. Overall, chartering the Gulfstream IV-SP cost less than trying to do the same trip on an airline. As far as time saved, on an airline, each of those ten legs would have required passengers to be at the airport 90 minutes in advance of their scheduled departure time. That alone would have wasted fifteen hours — the equivalent of two business days.

A chartered aircraft waits for passengers if they’re running late. If they need to change a destination, we can accommodate them. Travelers spend more time working and less time idle, literally turning back the clock and making everything they do more productive. And once we’re airborne, they can continue to do business, preparing for their next meeting and using the cabin as a mobile office. They can conference, spread out papers, and speak freely without worrying about strangers overhearing sensitive information.

This time/money exchange is present on every trip. Since I’m based in Los Angeles, our passengers are often in the entertainment industry. Imagine an artist or band who had a concert in Chicago on Monday, Miami on Tuesday, Denver on Wednesday, and Seattle on Thursday. They need to be in town early for rehearsals, interviews, and appearances. These tours sometimes last weeks or even months. Keeping a schedule like that would be nearly impossible without chartering. Imagine the cast of big budget film needing to be at film festivals, premieres, media interviews, awards shows, and such. Or the leaders of a private company about to go public or meeting with investors around the country prior to a product launch. Franklin was right: time is money.

When I fly on an scheduled airline, the inefficiency and discomfort remind me of why charter, fractional, and corporate aviation will only continue to grow. The price point of private flying doesn’t make sense for everyone, but for those who need it, it’s more than a convenience. It’s what makes doing business possible at all.