Archive for the ‘Ron Rapp’ Category

Upset Recovery Training vs. Aerobatics

Tuesday, October 28th, 2014

Upset recovery training has been all the rage over the past couple of years. A Google search of that exact phrase returns more than 24,000 results. There’s a professional association dedicated to such training. ICAO even declared aircraft upsets to be the cause of “more fatalities in scheduled commercial operations than any other category of accidents over the last ten years.”

Nevertheless, I get the impression that some folks wonder if it isn’t more of a safety fad than an intrinsic imperative. It’s hard to blame them. You can hardly open a magazine or aviation newsletter these days without seeing slick advertisements for this stuff. When I was at recurrent training a couple of months ago, CAE was offering upset recovery training to corporate jet pilots there in Dallas. “If I wanted to fly aerobatics, I’d fly aerobatics!” one aviator groused.

He didn’t ask my opinion, but if he had, I’d remind him that 99% of pilots spend 99% of their time in straight and level flight — especially when the aircraft in question is a business jet. I’m not exaggerating much when I say that even your typical Skyhawk pilot is a virtual aerobat compared to the kind of flying we do on charter and corporate trips. For one thing, passengers pay the bills and they want the smoothest, most uneventful flight possible.

In addition, these jets fly at very high altitudes – typically in the mid-40s and even as high as 51,000 feet. Bank and pitch attitudes tend to stay within a narrow band. Yaw? There shouldn’t be any. The ball stays centered, period. We aim for a level of smoothness that exceeds even that of the airlines. Passengers and catering may move about the cabin frequently during a flight, but it shouldn’t be because of anything we’re doing up front.

Fly like that for a decade or two, logging thousands and thousands of uneventful, straight-and-level hours and the thought of all-attitude flying can become – to put it mildly – uncomfortable. I’ve even seen former fighter pilots become squeamish at the thought of high bank or pitch angles after twenty years of bizjet flying.

Unfortunately, there are a wide variety of things that can land a pilot in a thoroughly dangerous attitude: wind shear, wake turbulence, autopilot failure, mechanical malfunction (hydraulic hard-overs, asymmetric spoiler or flap deployment, etc.), inattention, and last but not least, plain old pilot error. Look at recent high-profile accidents and you’ll see some surprisingly basic flying blunders from the crew. Air France 447, Colgan 3407, and Asiana 214 are just three such examples. It may not happen often, but when it does it can bite hard.

So yes, I think there is a strong need for more manual flying exposure in general, and upset recovery training in particular. This isn’t specific to jet aircraft, because some light aircraft have surpassed their turbine-powered cousins in the avionics department. I only wish the 1980′s era FMS computer in my Gulfstream was as speedy as a modern G1000 installation.

Defining the Problem

To the best of my knowledge, neither the NTSB or FAA provide a standard definition for “upset”, but much like Supreme Court Justice Potter Stewart, we pretty much know it when we see it. The term has generally come to be defined as a flight path or aircraft attitude deviating significantly from that which was intended by the pilot. Upsets have led to loss of control, aircraft damage or destruction, and more than a few fatalities.

As automation proliferates, pilots receive less hands-on experience and a gradual but significant reduction in stick-and-rudder skill begins to occur. The change is a subtle one, and that’s part of what makes it so hazardous. A recent report by the FAA PARC rulemaking workgroup cites poor stick and rudder skills as the number two risk factor facing pilots today. The simple fact is that windshear, wake turbulence, and automation failures happen.

The purpose of upset recovery training is to give pilots the tools and experience necessary to recognize and prevent impending loss of control situations. As the saying goes, an ounce of prevention is worth a pound of cure, and that’s why teaching recovery strategies from the most common upset scenarios is actually a secondary (though important) goal.

What about simulators? They’ve proven to be an excellent tool in pilot training, but even the most high fidelity Level D sims fall short when it comes to deep stalls and loss of control scenarios. For one thing, stall recovery is typically initiated at the first indication of stall, so the techniques taught in the simulator may not apply to a full aerodynamic stall. Due to the incredibly complex and unpredictable nature of post-stall aerodynamics, simulators aren’t usually programmed to accurately emulate an aircraft in a deeply stalled condition. Thus the need for in-aircraft experience to supplement simulator training.

Upset Recovery vs. Aerobatics

It’s important to note that upset recovery training may involve aerobatic maneuvering, but it does not exist to teach aerobatics. Periodically over the years, discussions on the merits of this training will cause a co-worker to broach the subject of flying an aerobatic maneuver in an airplane which is not designed and built for that purpose. This happened just the other day. Typically they’ll ask me if, as an aerobatic pilot, I would ever consider performing a barrel or aileron roll in the aircraft.

I used to just give them the short answer: “no”. But over time I’ve started explaining why I think it’s such a bad idea, even for those of us who are trained to fly such maneuvers. I won’t touch on the regulations, because I think we are all familiar with those. I’m just talking about practical considerations.

Normal planes tend to have non-symmetrical airfoils which were not designed to fly aerobatics. They feature slower roll rates, lower structural integrity under high G loads, and considerably less control authority. You might have noticed that the control surfaces on aerobatic airplanes are pretty large — they are designed that way because they’re needed to get safely into and out of aerobatic maneuvers.

That’s not to say an airplane with small control surfaces like a business jet or light GA single cannot perform aerobatics without disaster striking. Clay Lacy flies an airshow sequence in his Learjet. Duane Cole flew a Bonanza. Bob Hoover used a Shrike Commander. Sean Tucker flew an acro sequence in a Columbia (now known as the Cessna TTx). However, the margins are lower, the aerobatics are far more difficult, and pilots not experienced and prepared enough for those things are much more likely to end up hurt or dead.

Sean Tucker will tell you that the Columbia may not recover from spins of more than one or two turns. Duane Cole said the Bonanza (in which he did inverted ribbon cuts) had barely enough elevator authority for the maneuver, and it required incredible strength to hold the nose up far enough for inverted level flight. Bob Hoover tailored his performance to maneuvers the Shrike could do — he’ll tell you he avoided some aerobatic maneuvers because of the airplane’s limitations.

Knowing those limitations and how to deal with them — that’s where being an experienced professional aerobatic pilot makes the difference. And I’m sure none of those guys took flying those GA airplanes upside down lightly. A lot of planning, consideration, training and practice went into their performances.

Now, consider the aircraft condition. Any negative Gs and stuff will be flying around the cabin. Dirt from the carpet. Manuals. Items from the cargo area. Floor mats. Passengers. EFBs. Drinks. Anything in the armrest or sidewall pockets. That could be a little distracting. Items could get lodged behind the rudder pedals, hit you in the head, or worse.

If the belts aren’t tight enough, your posterior will quickly separate from the seat it’s normally attached to. And I assure you, your belts are not tight enough. Getting them that way involves cinching the lap belt down until it literally hurts. How many people fly a standard or transport category aircraft that way?

Now consider that the engine is not set up for fuel and oil flow under negative Gs. Even in airplanes specifically designed for acro, the G loads move the entire engine on the engine mount. In the Decathlon you can always see the spinner move up an inch or two when pushing a few negative Gs. Who knows what that would do with the tighter clearances between the fan and engine cowl on an airplane like the Gulfstream?

Next, let’s consider trim. The jet flies around with an electric trim system which doesn’t move all that quickly. The aircraft are typically trimmed for upright flight. That trim setting works heavily against you when inverted, and might easily reach the point where even full control deflection wouldn’t be sufficient.

I could go on, but suffice it to say that the more I learn about aerobatics, the less I would want to do them in a non-aerobatic aircraft – and certainly not a swept wing jet! Sure, if performed perfectly, you might be just fine. But any unusual attitude is going to be far more difficult — if not outright impossible — to recover from.

Dang it, Tex!

Every time someone references Tex Johnson’s famous barrel roll in the Boeing 707 prototype, I can’t help but wish he hadn’t done that. Yes, it helped sell an airplane the company had staked it’s entire future on, but aerobatic instructors have been paying the price ever since.

Aerobatic and upset recovery training: good. Experimenting with normal category airplanes: bad. Very bad.

Liability: The Price We Pay

Wednesday, October 1st, 2014

As large as the aviation industry looks to those on the outside, once you’re on the other side of the fence, it doesn’t take long to realize that it’s a very small world. One of the big challenges facing that world has been from product liability issues.

The $100 screw. The $9.00 gallon of fuel. The $5,000 part that costs $50 at a local hardware store. We’ve all seen it. I recall the day a friend told me the seat back for my Pitts S-2B, which is literally a small flat piece of ordinary plywood, cost something like $600. I’m not averse to parts manufacturers turning a profit, but that left my mouth hanging open. My friend? He just shrugged and walked away, as though this was ordinary and normal. The saddest part is that I realized he was right. It is.

Liability concerns are a major expense and motivator for many industries. That’s why Superman costumes come with warnings that “the cape does not enable the wearer to fly”, Zippo cautions the user not to ignite the lighter in your face, and irons are sold with tags advising against ironing clothes while they’re being worn. But for general aviation, this sort of thing is dragging the lot of us down as surely as a cement block tossed into the murky waters of the East River.

The classic example of this phenomenon can be seen in the high cost for new products like airplanes. Look at the sharp rise in the price of a new Skyhawk over the past thirty years. The first one was built in 1955, so the research and development costs for this model must have been recouped decades ago. A new Bonanza is a cool million. Low production volumes and high liability costs — a chicken and egg pair if there ever was one — are prime culprits for that inflation.

In fact, for about a decade, the general aviation industry essentially stopped producing new piston airplanes. From the mid-80s to the mid-90s, product liability was such that nearly every major OEM exited the business. The insurance costs rose, the manufacturers had no choice but to pass that on to the consumer, who was summarily priced out of the market. Sales fell, per-unit liability costs rose further, and the cycle spiraled downward until even those companies which still had an operating production line were only turning out a handful of airplanes per year.

The General Aviation Revitalization Act of 1994 helped somewhat. Aircraft manufacturers started producing planes again. The Cirrus, DiamondStar, Columbia, and other such advanced aircraft were brought to market. New avionics systems were developed. But the liability problem never went away. Frivolous lawsuits still abound, grinding away at our diminished world like a wood chipper consuming a sturdy log. Manufacturers have been sued for things as idiotic as not telling a pilot that the engine wouldn’t operate without fuel. I don’t have to tell you how this lunacy looks to people from other countries, do I?

I often wonder, what would an aircraft like the RV-6 cost if it was certified? You can buy one for as little as $45,000 today. Speaking of Amateur-Built aircraft, liability is one of the primary reasons advancements such as electronic ignition proliferate in the E-AB world when they’re almost unheard of in aircraft with a standard airworthiness certificate.

Mike Busch has penned many articles about the ways liability concerns drive decisions in the maintenance business. The result? Lower efficiency, higher cost, and at times even a decrease in the level of safety that is supposedly paramount. But it goes beyond that. Many products which would otherwise be brought to market are not because liability issues tilt the scale away from taking that risk in the first place.

Even proven, well-established products are sometimes lost to this phenomenon. Seven years ago, the largest manufacturer of aircraft carburetors, Precision Airmotive, abruptly decided to stop making, selling, and supporting them. In a letter to customers on their web site, they wrote:

Precision Airmotive LLC has discontinued sales of all float carburetors and component parts as of November 1, 2007. This unfortunate situation is a result of our inability to obtain product liability insurance for the product line. Precision Airmotive LLC and its 43 employees currently manufacture and support the float carburetors used in nearly all carbureted general aviation aircraft flying today. Precision has been the manufacturers of these carburetors since 1990. These FAA-approved carburetors were designed as early as the 1930s and continue to fly over a million flight hours a year. After decades of service, the reliability of these carburetors speaks for itself.

Nonetheless, Precision has seen its liability insurance premiums rise dramatically, to the point that the premium now exceeds the total sales dollars for this entire product line. In the past, we have absorbed that cost, with the hope that the aviation industry as a whole would be able to help address this issue faced by Precision Airmotive, as well as many other small aviation companies. Our efforts have been unsuccessful.

This year, despite the decades of reliable service and despite the design approval by the Federal Aviation Administration, Precision Airmotive has been unable to obtain product liability insurance for the carburetor product line. While we firmly believe that the product is safe, as does the FAA, and well-supported by dedicated people both at Precision and at our independent product support centers, unfortunately the litigation costs for defending the carburetor in court are unsustainable for a small business such as Precision.

Even if you don’t own an airplane, you’ve probably noticed that aircraft rental is prohibitively difficult and expensive. Companies like OpenAirplane are trying to make a dent in this formidable problem, but many aircraft types simply cannot be rented at all for solo flight anymore. Seaplanes, aerobatic aircraft, twins, turbines, and many other types might as well not exist unless you have the cash to buy them outright. And those that are still rented require extensive checkouts, form filling, and a large expenditure of time, money and energy. Why? To check every possible box off when it comes to liability. The manager of one FBO here in Southern California told me in no uncertain terms that it wouldn’t matter if Bob Hoover himself walked through the door, he wouldn’t get one iota of consideration in that regard. Does that sound right to you?

There’s an obvious answer here. If you’re thinking tort reform, you’re only half-right. Suing manufacturers for accidents that are clearly not their fault simply because the plaintiff knows they’ll settle is only ensuring the next generation won’t be able to fly. The real solution is to — in the words of a pilot I know — put on our big-boy britches and come to terms with the fact that life in general, and aviation in particular, involves risk. From the Doolittle Raiders to the folks at Cirrus Aircraft, history shows over and over again that risk is a part of every successful venture. We’d all love to live in a world where there is no risk, where following the dictates of Title 14 would ensure nothing ever goes wrong and nobody ever gets hurt. It’s a fallacy.

Crushing liability costs aren’t limited to carbs. And many parts of our airplanes are manufactured by a very small number of companies. Prop governors come to mind. Vacuum pumps. Brakes. Fasteners. If one firm is having trouble staying in business, odds are the others might be as well. It doesn’t portend a rosy future for the industry, especially when you consider that many of the advances we now enjoy came from small companies just like Precision Airmotive.

Sure, with Experimentals you have more freedom to put what you want on your aircraft. But many of the components on experimental aircraft are certified anyway. Most of them essentially have certified engines, props, skins, wiring, brakes, tires, fasteners, etc. This liability issue affects everyone regardless of what it says on the plane’s airworthiness certificate. This sort of thing isn’t limited to aviation. But GA is particularly vulnerable to abuse because of the implication that anyone involved in it must have deep pockets. The end result is a case like this one, where a jury awarded $480 million verdict against an aircraft manufacturer even though the NTSB indicated pilot error was the cause.

Liability concerns hurt everyone in aviation, not just those with reciprocating single-engines. I’ll give you one example from the corporate and charter business that I work in: time and time again, thousands of dollars of catering from one of our charter flights will go untouched by the passengers. We’ll land at our destination with a eighty pounds of beautifully packaged and prepared food. Five-star presentation of the highest-quality and healthiest food you’ll see anywhere.

At the same time, just beyond the airport fence are people who go to bed hungry. Logic dictates that we might want to put two and two together. But because the operators and customers of these aircraft are high net worth individuals who would certainly find themselves on the receiving end of a lawsuit at the first indication of food poisoning or other malady, load after load of this food goes into the trash every single day all across the country. Over the past three years I’d imagine the total weight of the food from flights I’ve flown that went into the trash would total a couple of tons.

While lawsuits and courtrooms certainly have their place, I personally think it’s high time our society acknowledged the fact that safety does not equate an absence of risk. Failure to do so is putting us, our industry, our economy, and even our way of life at risk. That’s the cost of the society we’ve built. Is it worth it?

Time is Money

Tuesday, September 2nd, 2014

One of the first things people discover about flying is that it requires an abundance of two resources: time and money. The money part is pretty obvious. Anyone who inquires about flight instruction at a local school will figure that one out before they even take their first lesson. The importance of time is a bit more nebulous.

When I began working as an instructor, I noticed that even in affluent coastal Orange County, at least one of those two assets always seemed to be in short supply. Those who had plenty of money rarely had much free time; they were financially successful because they worked such long hours. Younger pilots typically had fewer demands on their schedule, but funds were limited at best. It reminds me of Einstein’s famous mass-energy equivalence formula, E=mc2. But instead of matter and energy being interchangeable, it’s time and money. Benjamin Franklin took it a step further in a 1748 letter, concluding that “time is money”.


I learned to fly during a period when both of those elements were readily available. It was a luxury I didn’t appreciate — or even recognize — at the time. It’s probably for the best, since I would have been sorely tempted to spend even more on my addiction.

After flying Part 135 for the past three years, it’s interesting to note how those same limits apply to charter customers despite being much higher up on the proverbial food chain. These restrictions are the very reason Part 91/135 business aviation exists at all.

Case in point: I recently flew a dozen employees of a large retailer around the U.S. to finalize locations for new stores. They were able to visit ten cities in four days, spending several hours working at each destination. Out of curiosity, I ran our itinerary through booking sites like Kayak, Orbitz, and Travelocity to see how a group of twelve might fare on the airlines. Would you be surprised to learn that the answer is “not well”?

Our first leg, three hours in length, would have taken twelve hours and two extra stops on the airlines and actually cost more, assuming business class seats. Some of the subsequent legs wouldn’t have been possible at all on the airlines because they simply don’t serve those destinations. Overall, chartering the Gulfstream IV-SP cost less than trying to do the same trip on an airline. As far as time saved, on an airline, each of those ten legs would have required passengers to be at the airport 90 minutes in advance of their scheduled departure time. That alone would have wasted fifteen hours — the equivalent of two business days.

A chartered aircraft waits for passengers if they’re running late. If they need to change a destination, we can accommodate them. Travelers spend more time working and less time idle, literally turning back the clock and making everything they do more productive. And once we’re airborne, they can continue to do business, preparing for their next meeting and using the cabin as a mobile office. They can conference, spread out papers, and speak freely without worrying about strangers overhearing sensitive information.

This time/money exchange is present on every trip. Since I’m based in Los Angeles, our passengers are often in the entertainment industry. Imagine an artist or band who had a concert in Chicago on Monday, Miami on Tuesday, Denver on Wednesday, and Seattle on Thursday. They need to be in town early for rehearsals, interviews, and appearances. These tours sometimes last weeks or even months. Keeping a schedule like that would be nearly impossible without chartering. Imagine the cast of big budget film needing to be at film festivals, premieres, media interviews, awards shows, and such. Or the leaders of a private company about to go public or meeting with investors around the country prior to a product launch. Franklin was right: time is money.

When I fly on an scheduled airline, the inefficiency and discomfort remind me of why charter, fractional, and corporate aviation will only continue to grow. The price point of private flying doesn’t make sense for everyone, but for those who need it, it’s more than a convenience. It’s what makes doing business possible at all.

The Ab Initio Flaw

Wednesday, August 6th, 2014

Ecclesiastes tells us there’s nothing new under the sun. Where the pilot shortage debate is concerned, that’s definitely true. More than one industry veteran has wryly noted the “impending pilot shortages” of every decade since the Second World War. And considering the number of pilots trained during that conflict, you could say the shortage history goes back a lot further. How about to the very dawn of powered flight? I mean, Wilbur and Orville could have saved themselves tremendous time and money if only they’d had an experienced instructor to guide them!

Every “pilot shortage” article, blog post, and discussion I’ve seen centers around short-term hiring trends and possible improvements in salary and benefits for aviators. Nobody asked my opinion, but for what it’s worth, it seems both clear and logical that the regional airlines are hurting for pilots. The pay and working conditions at those companies are horrific. Major airlines, on the other hand, will probably never have trouble attracting people. I don’t know if that qualifies as a pilot shortage. I tend to think it does not. It’s more of a shortage of people who are willing to participate like lab rats in a Part 121 industry cost-cutting experiment.

What the pilot shortage mishegas really has me thinking about is the long-term possibility of ab initio schemes migrating to the United States and what a profoundly bad thing that would be for aviation at every level.

Who knew that JAL operates a huge fleet of Bonanzas?  For decades they operated an ab initio program out of Napa, California

Who knew that JAL operates a huge fleet of Bonanzas? For decades they operated an ab initio program out of Napa, California

According to Wikipedia, “ab initio is a Latin term meaning ‘from the beginning’ and is derived from the Latin ab (‘from’) + initio, ablative singular of initium (‘beginning’)”. In aviation, it refers to a method of training pilots. In fact, it’s the de facto technique in use for the majority of airlines around the world. Essentially, foreign airlines will hire people off the street who have no flight time or experience. They are shepherded through the various ratings and certificates necessary to fly an Boeing or Airbus while on the airline’s payroll.

This might sound like a brilliant idea — and to an airline, it probably is. Imagine, no bad habits or “we did it this way at my last job” issues, just well-trained worker bees who have been indoctrinated from day one as multi-pilot airline crew members.

I don’t know if the airlines love ab initio or not. What I do know is that non-U.S. airlines use it because there’s no other choice. The fertile, Mesopotamian breeding ground of flying experience we call general aviation simply does not exist in those countries. Without GA’s infrastructure, there are no light aircraft, flight schools, mechanics, or small airports where aspiring pilots can learn to fly. Those who do manage to get such experience more often than not get it here in the United States.

To put it another way, the “pilot shortage” has been going on in foreign countries since the dawn of aviation, and ab initio is the way they’ve solved the problem in most places.

So what’s my beef with this method of training? To put it simply, in an era of atrophying pilot skills, ab initio is going to make a bad problem worse. While it’s a proven way of ensuring a steady supply of labor, ab initio also produces a relatively narrow pilot who is trained from day one to do a single thing: fly an airliner. These airline programs don’t expose trainees to high Gs, aerobatics, gliders, sea planes, banner towing, tailwheels, instructing, or any of the other stuff that helps create a well-rounded aviator.

If airlines in the U.S. adopt the ab initio system, the pilots they hire will only experience things that are a) legally required, and b) directly applicable to flying a modern, automated airliner. Nothing else. After all, an airline will only invest what’s necessary to do the job. It’s a business decision. And in an era of cutthroat competition and razor thin profit margins, who could blame them?

The problem is, all those crap jobs young fliers complain about (and veterans seem to look back on with a degree of fondness) are vital seasoning for a pilot. He or she is learning to make command decisions, interact with employers and customers, and generally figure out the art of flying. It’s developing that spidey sense, taking a few hard knocks in the industry, and learning to distinguish between safe and legal.

These years don’t pay well where one’s bank account is concerned, but they are create a different type of wealth, one that’s often invisible and can prove vital when equipment stops working, weather is worse than forecast, or the holes in your Swiss cheese model start to line up.

Thus far, airline ab initio programs haven’t been a major part of the landscape here in the U.S. because our aviation sector is fairly robust. We are blessed with flying jobs which build the experience, skill, and time necessary for larger, more complex aircraft. But it’s easy to see why it might become an attractive option for airlines. For one thing, that darn pilot shortage. The cost of flying has risen dramatically over the past decade while the benefits (read: money) remain too low for too long. Airlines can cure the shortage by training pilots from zero hours… but at what cost?

Coming up through the ranks used to mean you were almost certain to be exposed to some of those elements. That’s why I believe ab initio would be just one more nail in the coffin of U.S. aviation, one more brick in the road of turning us into Europe. While I like visiting The Continent, I do not envy the size or scope of their aviation sector and sincerely hope we don’t go down that path.


Apparently I’m not the only one with ab initio on my mind. The day before the deadline for this post, AVweb reported on a major announcement from Boeing:

Now, with its subsidiary company Jeppesen, [Boeing] will undertake ab initio airline pilot training to provide a supply of pilots with an “Airline Transport Pilot License” (certificate in the U.S.) and a Boeing type rating who “will be ready to move into the first officer’s seat,” according to Sherry Carbary, vice president of flight services.

Boeing’s ab initio training program is divided into two parts. The first, run by Jeppesen, will take an applicant—referred to as a cadet—who must hold a first-class medical at the time of application, and put her or him through a screening process. Those who pass will go through 12-18 months of flight training, resulting in, according to David Wright, director of general aviation training, an Airline Transport Pilot License. The second phase involves the cadet going to a Boeing facility for another two months of training where she or he gets a first exposure to a full-motion jet simulator, and that will result in a type rating in a Boeing jet. Wright said that cadets will come out of the $100,000-$150,000 program with 200-250 hours of flying time and will be ready to go into the right seat of an airliner.

Boeing jets are operated by major airlines, not regionals. An American pilot would typically sport several thousand of hours of flight experience before being hired there. Now Boeing is proposing to put 200 hour pilots into their airplanes on a worldwide basis. That won’t fly (yet) in the U.S., where 1,500 hours is currently required for an Airline Transport Pilot certificate. But I believe the ab inito trend bodes ill for airlines and general aviation alike.

We Don’t Train For That

Monday, July 7th, 2014

The tragic Gulfstream IV accident in Boston has been on my mind lately, partly because I fly that aircraft, but also because the facts of the case are disquieting.

While I’m not interested in speculating about the cause, I don’t mind discussing factual information that the NTSB has already released to the public. And one of the initial details they provided was that the airplane reached takeoff speed but the pilot flying was not able to raise the nose (or “rotate,” in jet parlance).

My first thought after hearing this? “We don’t train for that.” Every scenario covered during initial and recurrent training—whether in the simulator or the classroom—is based on one of two sequences: a malfunction prior to V1, in which case we stop, or a malfunction after V1, in which case we continue the takeoff and deal with the problem in the air. As far as I know, every multi-engine jet is operated the same way.

But nowhere is there any discussion or training on what to do if you reach the takeoff decision speed (V1), elect to continue, reach Vr, and are then unable to make the airplane fly. You’re forced into doing something that years of training has taught you to never do: blow past V1, Vr, V2, and then attempt an abort.

In this case, the airplane reached 165 knots—about 45 knots beyond the takeoff/abort decision speed. To call that uncharted territory would be generous. Meanwhile, thirty tons of metal and fuel is hurtling down the runway at nearly a football field per second.

We just don’t train for it. But maybe we should. Perhaps instead of focusing on simple engine failures we ought to look at the things that are causing accidents and add them to a database of training scenarios which can be enacted in the simulator without prior notice. Of course, this would have to be a no-jeopardy situation for the pilots. This wouldn’t be a test, it would be a learning experience based on real-world situations encountered by pilots flying actual airplanes. In some cases there’s no good solution, but even then I believe there are valuable things to be learned.

In the case of the Gulfstream IV, there have been four fatal accidents since the aircraft went into service more than a quarter of a century ago. As many news publications have noted, that’s not a bad record. But all four have something in common: each occurred on the ground.

  • October 30, 1996: a Gulfstream IV crashed during takeoff after the pilots lose control during a gusting crosswind.
  • February 12, 2012: a Gulfstream IV overran the 2,000 meter long runway at Bukavu-Kamenbe
  • July 13, 2012: a G-IV on a repositioning flight in southern France departs the runway during landing and broke apart after hitting a stand of trees.
  • May 31, 2014: the Gulfstream accident in Boston

In the few years that I’ve been flying this outstanding aircraft, I’ve seen a variety of odd things happen, from preflight brake system anomalies to flaps that wouldn’t deploy when the airplane was cold-soaked to a “main entry door” annunciation at 45,000 feet (believe me, that gets your attention!).

This isn’t to say the G-IV is an unsafe airplane. Far from it. But like most aircraft, it’s a highly complex piece of machinery with tens of thousands of individual parts. All sorts of tribal knowledge comes from instructors and line pilots during recurrent training. With each anomaly related to us in class, I always end up thinking to myself “we should run that scenario in the simulator.”

Cases like United 232, Apollo 13, Air France 447, and US Air 1549 prove time and time again that not every failure is covered by training or checklists. Corporate/charter aviation is already pretty safe… but perhaps we can do even better.

Trust Us — We’re Professionals

Wednesday, June 11th, 2014

I’ve seen some ill-conceived policies emanate from the FAA over the course of my professional flying career. Some diktats are just busy work, while others fail to achieve an otherwise admirable end. But the worst are those that create the very hazard they are supposed to prevent.

Case in point: the recent adoption of 14 CFR 121.542(d), which prohibits the use of any personal electronic devices in flight. According to the FAA, this rule is “intended to ensure that non-essential activities do not affect flight deck task management or cause a loss of situational awareness during aircraft operation.”

Sounds great on the surface, doesn’t it? I mean, who could possibly oppose a rule which the Feds ostensibly see as the aeronautical equivalent of a ban on texting while driving? Keeping distractions at bay and pilots focused on flying has got to be a wonderful enhancement for safety.

But it’s not. The flight profiles of airlines, cargo haulers, charter companies, fractionals, corporate flight departments, and even private GA operators often dictate long stretches of straight-and-level flight with the autopilot on. Surely the FAA is aware of this. Now add in circadian rhythm issues associated with overnight flights, a dark cockpit with minimal radio traffic, and a flight crew pairing who have run out of things to talk about. There’s nothing to do but stare off into the inky darkness for hour upon hour. It’s a recipe for falling asleep.

Say what you will about distractions on the flight deck, but I’d much rather see a pilot peruse an issue of AOPA Pilot while in cruise than to have that individual zoned out or inadvertently napping. For one thing, the process of waking up takes time, whereas an alert human need only change focus. We already do that dozens of times on every flight anyway. Check in on the engine instruments, then answer a question from a passenger, then look out the window, then consult a chart. We do this all day long.

Is there much difference between reading a magazine and delving into the minutia of some random page of the Jeppesen manual when they’re both a form of busy work to keep the mind engaged during slow periods in cruise? I sincerely doubt a roundtable of experts in automation and human factors would have come up with a PED ban.

I can understand prohibiting them below, say, 10,000′ when the sterile cockpit rule is in effect. That’s a busy time for pilots, and non-essential items are naturally stowed at that point anyway. But electronic devices in and of themselves can be helpful in staving off the ultimate distraction. “Flight to Safety” author and Airbus pilot Karlene Petitt said it best:

Numerous studies have shown that one of the tips to help fall to sleep is to NOT watch television or work on your computer at a minimum of an hour before bedtime. The light suppresses melatonin production and stimulates brain activity. I’m not sure about you, but I want my pilots alert with stimulated brains. Give them something to do to keep them awake.

As many of you have probably noted, this rule is located in Part 121 and therefore only applies to scheduled airlines. From maintenance requirements to medical certification, their regs are the strictest around, so perhaps this seems much ado about nothing for a general aviation audience. But the FAA is of the opinion that this limitation should reach a lot further than United and Delta:

Recommended Actions: This prohibition on personal use of electronic devices on the flight deck in the final rule is applicable only to operations under part 121. However, Directors of Safety and training managers for all operators under parts 135 and 125, as well as part 91K, are encouraged to include operating procedures in their manuals and crewmember training programs prohibiting flightcrew members from using such devices for personal use during aircraft operation.

Will this eventually reach down to Part 91? Who knows. Even if it doesn’t, the real problem is that the FAA is spoon-feeding each and every individual action and prohibition to us without making allowances for the differences inherent in each type of operation. One-size-fits-all is wonderful for tube socks and scarves, but when it comes to flight safety, it’s just bad policy.

The smart way to go about this would be to leave it to the individual company, flight department and/or individual to determine what PED policy best serves the cause of safety. If you’re Southwest Airlines or a charter operator company flying VLJs, you probably aren’t flying long-haul trips and might be fine with reasonable PED limitations. Certainly using them below 10,000′ could be prohibited. But if you’re flying international cargo in a jumbo jet or hopping continents in a Global 5000 on legs of twelve or thirteen hours? That personal electronic device could be incredibly helpful in maintaining alertness.

Whether it’s a vocation or an avocation, pilots are a professional lot who can be trusted to make their own decisions about portable electronic devices.

The Hacked Airplane

Wednesday, May 14th, 2014

For better or worse, the relentless march of technology means we’re more connected than ever, in more places than ever. For the most part that’s good. We benefit from improving communication, situational awareness, and reduced pilot workload in the cockpit. But there’s a dark side to digital connectivity, and I predict it’s only a matter of time before we start to see it in our airborne lives.

Consider the recent Heartbleed security bug, which exposed countless user’s private data to the open internet. It wasn’t the first bug and it won’t be the last. Since a good pilot is always mindful the potential exigencies of flying, it’s high time we considered how this connectivity might affect our aircraft.

Even if you’re flying an ancient VFR-only steam gauge panel, odds are good you’ve got an Android or iOS device in the cockpit. And that GPS you rely upon? Whether it’s a portable non-TSO’d unit or the latest integrated avionics suite bestowed from on high by the Gods of Glass, your database updates are undoubtedly retrieved from across the internet. Oh, the database itself can be validated through checksums and secured through encryption, but who knows what other payloads might be living on that little SD card when you insert it into the panel.

“Gee, never thought about that”, you say? You’re not alone. Even multi-billion dollar corporations felt well protected right up to the moment that they were caught flat-footed. As British journalist Misha Glenny sagely noted, there are only two types of companies: those that know they’ve been hacked, and those that don’t.

Hackers are notoriously creative, and even if your computer is secure, that doesn’t mean your refrigerator, toilet, car, or toaster is. From the New York Times:

They came in through the Chinese takeout menu.

Unable to breach the computer network at a big oil company, hackers infected with malware the online menu of a Chinese restaurant that was popular with employees. When the workers browsed the menu, they inadvertently downloaded code that gave the attackers a foothold in the business’s vast computer network.

Remember the Target hacking scandal? Hackers obtained more than 40 million credit and debit card numbers from what the company believed to be tightly secured computers. The Times article details how the attackers gained access through Target’s heating and cooling system, and notes that connectivity has transformed everything from thermostats to printers into an open door through which cyber criminals can walk with relative ease.

Popular Mechanics details more than 10 billion devices connected to the internet in an effort to make our lives easier and more efficient, but also warns us that once everything is connected, everything will be open to hacking.

During a two-week long stretch at the end of December and the beginning of January, hackers tapped into smart TVs, at least one refrigerator, and routers to send out spam. That two-week long attack is considered one of the first Internet of Things hacks, and it’s a sign of things to come.

The smart home, for instance, now includes connected thermostats, light bulbs, refrigerators, toasters, and even deadbolt locks. While it’s exciting to be able to unlock your front door remotely to let a friend in, it’s also dangerous: If the lock is connected to the same router your refrigerator uses, and if your refrigerator has lax security, hackers can enter through that weak point and get to everything else on the network—including the lock.

"There's an app for that!".  The Gulfstream interior can be controlled via an iOS device.

“There’s an app for that!”. The Gulfstream interior can be controlled via an iOS device.

We can laugh at the folly of connecting a bidet or deadbolt to the internet, but let’s not imagine we aren’t equally vulnerable. Especially in the corporate/charter world, today’s airplanes often communicate with a variety of satellite and ground sources, providing diagnostic information, flight times, location data, and more. Gulfstream’s Elite cabin allows users to control window shades, temperature, lighting, and more via a wireless connection to iOS devices. In the cockpit, iPads are now standard for aeronautical charts, quick reference handbooks, aircraft and company manuals, and just about everything else that used to be printed on paper. Before certification, the FAA expressed concern about the Gulfstream G280′s susceptibility to digital attack.

But the biggest security hole for the corporate/charter types is probably the on-board wi-fi systems used by passengers in flight. Internet access used to be limited below 10,000 feet, but the FAA’s recent change on that score means it’s only a matter of time before internet access is available at all times in the cabin. And these systems are often comprised of off-the-shelf hardware, with all the attendant flaws and limitations.

Even if it’s not connected to any of the aircraft’s other systems, corporate and charter aircraft typically carry high net-worth individuals, often businessmen who work while enroute. It’s conceivable that a malicious individual could sit in their car on the public side of the airport fence and hack their way into an aircraft’s on-board wi-fi, accessing the sensitive data passengers have on their laptops without detection.

What are the trade secrets and business plans of, say, a Fortune 100 company worth? And what kind of liability would the loss of such information create for the hapless charter company who found themselves on the receiving end of such an attack? I often think about that when I’m sitting at Van Nuys or Teterboro, surrounded by billions of dollars in jet hardware.

Aspen's Connected Panel

Aspen’s Connected Panel

Internet connectivity is rapidly becoming available to even the smallest general aviation aircraft. Even if you’re not flying behind the latest technology from Gulfstream or Dassault, light GA airplanes still sport some cutting-edge stuff. From the Diamond TwinStar‘s Engine Control Units to the electronic ignition systems common in many Experimental aircraft to Aspen’s Connected Panel, a malicious hacker with an aviation background and sufficient talent could conceivably wreak serious havoc.

Mitigating these risks requires the same strategies we apply to every other piece of hardware in our airplanes: forethought, awareness, and a good “Plan B”. If an engine quits, for example, every pilot know how to handle it. Procedures are committed to memory and we back it up with periodic recurrent training. If primary flight instruments are lost in IMC, a smart pilot will be prepared for that eventuality.

As computers become an ever more critical and intertwined part of our flying, we must apply that same logic to our connected devices. Otherwise we risk being caught with our pants down once the gear comes up.

Contracting: A Great Career Option for the Professional Pilot

Wednesday, April 16th, 2014

As much as one may love flying, it can be a tough career choice. Many pilots struggle through the food chain only to end up discouraged, if not downright hating their job. We’re all aware of the reasons: low pay, long days, little respect, too much time away from home, difficult working conditions, commuting, regulatory hassles, bankruptcies, furloughs, and ruinously expensive training.

Quite a list, isn’t it?

Ours is a small community; word gets around, and it begs the question, how many have bypassed a flying career altogether because of it? I once read a survey suggesting that most pilots would not recommend the field to their children. Of course, many vocations are in this rickety boat. Even formerly high-flying professions like physician and attorney have lost their luster. The message: “it ain’t what it used to be”.

On the other hand, life is often what we make of it. From bush flying to firefighting, there are many different gigs out there for those willing to take Frost’s road-less-traveled. For the past three years, for example, I’ve been flying as a “contract pilot” and truly enjoy it.

The Contractor

Ready to Ride

It’s kind of a generic term, since anyone who flies as an independent contractor rather than a traditional, W-2 employee fits the definition, but I’ll focus on Part 91 and 135 corporate/charter flying because that’s what I know best.

Contract pilots function as a kind of overflow labor. Operators might need temporary help in the cockpit for a variety of reasons: a full-timer is sick, on vacation, leaves the company, times out due to regulatory limitations, or is unavailable for some other reason. God forbid, maybe they ran into trouble with a checkride or medical exam. Perhaps a trip requires multiple pilots due to length or logistics.

Some companies find it advantageous to run tight on full-time labor and supplement with contract pilots since there are no annual costs for training or benefits. They only have to pay contractors when they’re actually used, so as the flight schedule ebbs and flows, they can gracefully scale their workforce up or down without the inefficiency of, say, leaving full-time, salaried pilots sitting at home for an extended period.

For the pilot, there are both pros and cons to life as a contractor.

The Pros

  • You’ve got some control over your schedule and can decline trips. I really hate doing that, because a) I don’t want the company to stop calling me, and b) you never know when things will slow down, so it’s smart to sock away some acorns for the winter. But if you’ve got a big vacation planned or your best friend is getting married? You’re ultimately in control.
  • We can work for multiple operators, which can provide a bit of protection if the flying slows down at one company.
  • You aren’t tied to a seniority system. If you’re an experienced captain at company A, you needn’t start over as the lowest-paid right seater at company B.
  • Contractors earn far more per day than full-time employees, and therefore needn’t work as many days to reach a given income level. That means better quality of life, especially if you’re married and/or have kids.
  • Contract pilots are typically paid by the day. I might have a five day trip consisting of a flight to Hawaii followed by three days on the island before flying home. That’s five days “on the clock”. It can be a more lucrative system than one where you are compensated based on flight hours. Operators are essentially purchasing your time.
  • You’ll travel the country, if not the world. Instead of a few major airports, on larger aircraft like the Gulfstream, you’ll see places you’d never dream of. Though I haven’t been there — yet — North Korea and the South Pole have both been on the table. (Random note: Jeppesen does publish charts and procedures for Pyonyang!)
  • I always get an honest sense of gratitude from the operators for whom I fly, because by definition I’m helping them out when they really need a pilot. For example, I recently got a call from a Part 91 Gulfstream operator whose pilot broke his arm in the middle of a trip. I airlined out the same day and flew that evening’s leg to Las Vegas, keeping the aircraft on schedule.

The Cons

You knew there had to be a few, right?

  • Contractors inherit all the hassles of being your own boss. Does anyone work harder? From providing your own benefits (don’t get me started about healthcare) to paying self-employment taxes, it’s not always the carefree work-and-go-home experience of a full-time employee.
  • You pay for your own training. On a jet, the annual recurrent training costs run in the thousands. I currently allot $15,000/year for recurrent training and associated costs (airfare, hotels, food, incidentals) on my airplane. The expenses are deductible, which helps a bit, but I figure my first month’s work each year is spent digging my way back to financial “zero”.
  • You can’t control when the phone rings. That can mean short-notice trips and/or weird hours.
  • It can be hard to plan your life out when you never know what days you’ll be working. I average about 10 days a month away, so my philosophy has been to just plan my social life as usual, and make sure people know I sometimes have to reschedule or cancel.
  • Work can conflict with itself. I’ve had three operators call me for a trip on the same day. I can only be in one place at at time, so I “missed out” on two of them.
  • No guarantee of work. But then, history has shown that there are no guarantees in life or aviation for anyone, are there?
  • It can be tough getting started. As with many careers, the best entrée is knowing someone who can get you in the door. Initial start-up costs of obtaining a type rating can be a major barrier.


I like contracting because when a trip is offered I know it’s because the operator wants to use me rather than has to use me. Contracting represents some of the best that flying has to offer: adventure, interesting destinations and passengers, phenomenal aircraft, and decent pay for the work I do.

So why don’t more people jump into contracting? Awareness, for starters. Not everyone knows about this little niche. Also, it can be tough to break in to the business. You don’t have to know someone on the inside, but it certainly helps.

The initial expense is probably the largest impediment. The best compensation is found on the larger aircraft, and that means an expensive type rating funded solely by the contractor. Some pilots speculate on their ability to get work by obtaining the type before they have a job to use it on. Unless you’re well-heeled, that’s a big financial risk, but it works out for some people.

There is a rather circuitous way around the type rating burden: start off as a salaried employee and switch to contracting after a couple of years. That way the operator pays for your training and in exchange you accumulate a significant body of experience on the airplane.

FAA to the Rescue! Not.

I should note that contracting in the Part 135 world is a bit harder than it used to be. In the old days, if you were typed and current on an aircraft, you could fly for any charter company that operated that kind of plane. It wasn’t uncommon for a contract pilot to fly for several operators. A few years ago — for reasons no one has been able to adequately explain — the FAA essentially did away with that capability.

Today, a five-figure recurrent only entitles you to work for the certificate holder under whom you trained. It doesn’t matter if you’re a veteran of ten years and 10,000 hours in a Gulfstream IV; if you went to recurrent on Company A’s OpSpec, as far as the FAA is concerned, when you move to Company B you are completely unqualified to operate a G-IV on any Part 135 flight until you’ve been through another recurrent… at your own expense, of course.

At first, this seemed like a potential deal-breaker for contract pilots, but it can help as much as it hurts. Just as the change make it harder for a contractor to work for multiple operators, it also makes it more challenging for that operator to replace a contract pilot since a successor wouldn’t be legal to fly until they went back for recurrent training.

Walking the Aviation Tightrope

Contracting does have something in common with scheduled airlines: it’s not right for everyone. If you’re the type that wants a fixed schedule or has to know exactly how much your bi-weekly paycheck is going to be, this ain’t the place. In addition to all the attributes of a good corporate or charter pilot, contracting requires the ability to run a business and cope with uneven income. Some months will be fantastic. Others, not so much. Even when business is slow, though, I get something valuable: more time at home with friends and family. Like I said at the top, life is what you make of it.

But the ability to earn a six figure income right off the bat while working a relatively small number of days? For me at least, it’s more than worth it. What I want in my flying carer is sustainability, the capacity to survive on this aviation tightrope, and ironically that’s what contracting provides. I want to fly without hating it, and that means avoiding the soul-crushing schedule and monotony of many professional flying jobs.

The Journey of a Thousand Miles

Wednesday, March 19th, 2014

For as long as I can remember, “no news” has been “good news” when it comes to rules and regulations in the world of aviation. From field approval policy to sleep apnea to CBP searches and security theatre, any diktat emanating from Washington or Oklahoma City was sure to involve increasing demands of time and money while diminishing the usefulness and enjoyment of general aviation. That was the trend.

What a breath of fresh air it is, then, to hear of a well-suported and coordinated effort in both houses of Congress to enact legislation which would eliminate formal medical certification for many aviators.

Like the House bill, the new Senate legislation would exempt pilots who make noncommercial VFR flights in aircraft weighing up to 6,000 pounds with no more than six seats from the third-class medical certification process. Pilots would be allowed to carry up to five passengers, fly at altitudes below 14,000 feet msl, and fly no faster than 250 knots.

When the bill was first offered in the House of Representatives as the General Aviation Pilot Protection Act, it seemed like a long shot. Congress is not a known for acting boldly to free Americans from the heavy yoke of regulation, so one could be forgiven for not getting their hopes up. But now things are different: there’s a matching bill in the Senate, the House iteration has 52 co-sponsors, and the Congressional General Aviation Caucus has grown to more than 250 members.

Is it a done deal, then? Not at all. There’s no guarantee of passage or that President Obama would even sign the bill into law. But the sponsors and caucus members represent a good mix from across the political spectrum, and there are no special interests of any significance who benefit from the medical certification machinery, so I believe the prospects are encouraging.

This Pilot Protection Act is exceptional for several reasons. First, it goes far beyond even the historically pie-in-the-sky proposal fronted collectively by AOPA and EAA. When was the last time that happened? I can’t recall a single example. Typically we’ll ask for X and end up feeling extraordinary fortunate to get even half of it.

That AOPA/EAA submission, by the way, has languished on the FAA’s desk for two years and has yet to be acted upon by the agency. If one needed proof of just how sclerotic the bureaucratic machine has become, this is it. The delay is egregious enough to have warranted an official apology from FAA Administrator Huerta.

Just as importantly, though, is the fact that this is a legislative move rather than a regulatory one. It’s an important distinction, because regulations are instituted with relative impunity by agencies like the FAA, while Congress passes laws that are not nearly as vulnerable to bureaucratic vagaries. In other words, if the FAA instituted the very same change in medical certification through regulatory channels, they could alter or reverse those improvements just as easily. A law, on the other hand, should prove far more durable since the Feds must comply with it whether they like it or not.

It’s a shame that this common-sense change requires a literal Act of Congress. And what does it say about the FAA that a body with 9% approval rating is coming to the rescue of the private pilot? Were it to remain in the FAA’s corner, this medical exemption would probably never see the light of day. I don’t just mean that it would not be approved, I mean it would never even be acted upon at all.

There is a certain schadenfreude which comes from watching the FAA, which is known for soliciting comments from the aviation industry only to ignore that input, suffer the same fate at the hands of the House and Senate. My only question is: what took so long? The last time Congress lent the industry a helping hand was with the General Aviation Revitalization Act. That was in 1994 — twenty years ago. While I’m thankful they’re finally getting off the bench and into the game, this boost is long overdue. I sincerely hope they will not only see it through, but look for other ways to help bring a uniquely American industry back from the brink.

An easing of the medical certification requirements will not fix all of GA’s woes. But if the journey of a thousand miles begins with a single step, perhaps this will at least get us headed in the right direction.

One final note: if you haven’t called your Representative and Senators to express strong support for H.R. 3708 and S. 2103, respectively, please do so! Unlike FAA employees, these folks are up for re-election in eight months. The closer we get to November, the more likely they are to listen.

A True Story: Landing at the Wrong Airport

Tuesday, February 18th, 2014

I wrote a bit about wrong-airport landings last month after the Dreamlifter made an unscheduled detour to a small civilian airport in Wichita.

They say things happen in threes, so it wasn’t surprising that the faux pas keeps recurring. Next was a Southwest Airlines flight — which really could have ended badly as they put their 737 down on a far shorter runway (3,738 feet) than any I’ve seen a Boeing airliner utilize.

Speaking of landing distance, for most Part 91 pilots, as long as you can stop on the available runway without bending anything, you are good to go from a legal standpoint. Airlines and charter operators, on the other hand, are required to have a significant safety margin on their landing runways. 14 CFR 121.195(b) dictates that a full stop landing be possible within 60 percent of the effective length of the runway. To put that into perspective, John Wayne Airport’s runway 19R is considered to be one of the shortest used by major airlines on a regular basis. That runway is 5,700 feet long, so landing on a 3,700 foot strip — at night, no less — must have been exciting for all concerned.

The third (and hopefully last one) for a while was a Boeing 787 which narrowly managed to avert landing at the wrong field, but only with the help of an alert air traffic controller.

I related the story of my own Wichita experience in order to explain how easily one airport can be mistaken for another. But I can take it a step further: I once witnessed a very memorable wrong-airport landing.

Intruder Alert

It was 2008, and I was in Arizona for an aerobatic contest being held at the Marana Regional Airport (which also happens to be where all those Starships are awaiting their final fate). Ironically, a number of FAA inspectors had been on-site just 24 hours earlier, ramp checking every pilot and aircraft as they arrived for the competition. Too bad they didn’t show up the next day, because they missed quite a show.

At Marana, the aerobatic box is located two miles southeast of the field, and at the time the incident occurred the contest was in full swing. These events require a large contingent of volunteers to operate, so traditionally competitors will help with contest duties when their category is not flying. I was sitting just outside the aerobatic box, judging a combined group of Advanced power and glider pilots when I overheard someone at the chief judge’s table calling out a traffic threat. Despite waivers, NOTAMs, ATIS broadcasts, and other information about the contest’s presence, it’s not unheard of for a non-participating aircraft to wander through the aerobatic box.

The chief judge had just cleared a new competitor into the box, so he immediately called back and told him to return to the holding area and keep an eye out for the encroaching airplane. I scanned the sky and visually acquired a minuscule speck in the air south of the box. I figured it was a small general aviation aircraft of some sort, but as time passed and the tiny dot grew in size, it became apparent that this was no Bonanza or Skyhawk. We all watched in amazement as a Boeing 757 materialized in all its splendor. The landing gear extended and it flew a beautiful descending left turn right through the aerobatic box and dipped below our horizon.

Imagine seeing this thing bearing down on you at your local general aviation airport!

Imagine seeing this thing bearing down on you at your local general aviation airport!

“Well that was weird”, I thought. But hey, this was my first time at Marana. Perhaps there was some sort of charter flight coming in, or the airplane needed to divert for a medical emergency or mechanical problem.

The judging line maintains radio contact with the airport’s traffic frequency as well as the contest volunteers at the airport via a separate set of walkie-talkies, so we heard the sound of silence over the CTAF as this happened. I was later told that the Air Force Academy cadets, who had come out from Colorado Springs to compete in various glider categories, were on the runway getting a TG-10C glider (a military version of the Blanik L-13AC) hooked up to a tow plane when it became clear that the 757 planned on using that same piece of pavement. The cadets scrambled, clearing the runway in record time just as the Boeing touched down smoothly on runway 30, oblivious to everything going on around it.

Thanks to the radios, we were able to follow the action from the judging line even though we couldn’t see the airport from our location. It must have been shortly after they turned off onto a taxiway that the flight crew realized something wasn’t right, because the 757 stopped on the taxiway and just sat there. Marana’s airport manager tried to raise them on the airport’s frequency, 123.0 MHz, but had no luck. For what seemed like an eternity, there’s was nothing to hear but the sound of the Boeing’s two engines idling. Were their radios out, we wondered?

Mystery Solved

Then someone suggested trying 123.05, the frequency for nearby Pinal Airpark. It was at that moment everyone realized exactly what had happened. Wikipedia describes Pinal best:

Its main purpose is to act as a “boneyard” for civilian commercial aircraft. Old airplanes are stored there with the hope that the dry desert climate will mitigate any form of corrosion in case the aircraft is pressed into service in the future. It is the largest commercial aircraft storage and heavy maintenance facility in the world. Even so, many aircraft which are brought there wind up being scrapped.

Note the similarity between Pinal and Marana in terms of location, runway orientation, and relative size.

Note the similarity between Pinal and Marana in terms of location, runway orientation, and relative size.

Pinal and Marana are eight miles apart and share the same 12/30 runway orientation. The 757 was devoid of passengers and cargo; it was being ferried to Pinal for long-term storage after the Mexican airline which operated it declared bankruptcy. Since Pinal has no instrument approach procedures, the pilots had to make a visual approach into the airfield and simply fixated on Marana once they saw it.

Once the airport manager established radio contact with the crew, he didn’t want to let them move since he was concerned about the weight bearing capacity of the taxiways. However, the pilots gave him their current weight and were allowed to proceed. So they taxied back to runway 30 and just took off, presumably landing at Pinal a couple of minutes later.

That was the last I ever heard about that incident, but I’ve often wondered what happened to the pilots. Was the FAA notified? Was there an investigation? Did the airline know? And because they were in the process of liquidation, would it have mattered anyway? I suppose it’s all water under the bridge now.


What makes this incident a little different from the others I discussed above is that it took place in broad daylight instead of at night. You’d think the pilots would have noticed the lack of a boneyard at Marana, but if it was their first time going into Pinal, perhaps it wouldn’t have been missed. When multiple airports exist in the same geographic area, they tend to have similar runway orientations because the prevailing winds are more-or-less the same.

As I was writing this, AVweb posted a story about an Associated Press report on this very subject.

Using NASA’s Aviation Safety Reporting System, along with news accounts and reports sent to other federal agencies, the AP tallied 35 landings and 115 approaches or aborted landing attempts at wrong airports by commercial passenger and cargo planes over more than two decades.

The tally doesn’t include every event. Many aren’t disclosed to the media, and reports to the NASA database are voluntary. The Federal Aviation Administration investigates wrong airport landings and many near-landings, but those reports aren’t publicly available.

The Marana 757 incident is probably one of those which does not appear in the ASRS database. At the very least, it doesn’t appear under the AVQ identifier for Marana Regional Airport. But if the press had found out about it (which they would have in this age of smartphones if there were passengers on board), I’m sure it would have created the same stir we’ve seen with the other incidents.

It might seem that wrong-airport landings are becoming more common, but the statistics show that to be a coincidence. “There are nearly 29,000 commercial aircraft flights daily in the U.S., but only eight wrong airport landings by U.S. carriers in the last decade, according to AP’s tally. None has resulted in death or injury.”

As a charter pilot, the thing I’m wondering about is whether “commercial aircraft” includes Part 135 flights. Based on the 29,000 figure, I’d assume it does not. Unlike scheduled airlines, charters can and do go to any airport at any time. On larger aircraft, the opspec can literally be global. You’d think this would make a wrong-airport scenario more common, but after several years of flying to little corners of the globe, I think this kind of worldwide operation might lower the odds of wrong-airport landing since the destination is frequently unfamiliar and therefore the crew is already on guard.

Theoretically we should always fly that way. Unfortunately, human nature can make it tough to sustain that healthy sense of skepticism when a long day concludes at an accustomed airfield. Perhaps recognizing that fact is half the battle.