Menu

Tag: NextGen

It’s About Time!

I just added ADS-B Out to my airplane. I’ve been looking forward to this moment for a very long time—48 years to be exact.

Air Facts (May 1970)

Air Facts (May 1970)
click image to read article

It was 48 years ago that my very first aviation article was published. Its title was “The Role of Computers in Air Traffic Control.” I was 26 years old at the time, not long out of college, and starting a career in computer software at the dawn of the computer age. I’d only been a pilot for five years and an aircraft owner for two.

I timidly submitted the 3,000-word manuscript to Leighton Collins (1903-1995), the dean of general aviation journalists (and Richard Collins’ dad). Leighton founded his magazine Air Facts in 1938, the first GA magazine to focus primarily on safety. In the ‘50s and ‘60s, Leighton became a pioneer in using GA airplanes to fly IFR, something that was considered risky business at the time. In 1970, I was a newly-minted CFII and Skylane owner, and Leighton was my hero and Air Facts my bible.

Leighton loved my article, and published it in the May 1970 issue of Air Facts.  I was thrilled. I was also hooked and went on to write more than 500 published aviation articles between then and now.

How big is the sky?

I’d been instrument-rated for about four years when I wrote that article, and had thought quite a bit about the differences between VFR and IFR flying:

A pilot flying VFR in clear weather is unlikely to see more than a few other aircraft on a typical flight; to him the sky seems to be a rather empty place. Yet to the pilot stuck in an IFR hold with an estimated-further-clearance time forty-five minutes away, the sky seems to be an order of magnitude more crowded. Why? Clearly there is no shortage of airspace; every VFR pilot knows that. The aircraft flying under IFR have the best equipment and the most proficient pilots aboard. Where does the congestion come from?

My conclusion was that the fundamental difference between VFR and IFR lies in who is separating aircraft. VFR pilots are responsible for their own separation, while IFR pilots rely on air traffic controllers to keep them separated from other traffic. Thus, I reasoned, the comparatively low capacity of the IFR system must be attributable to some failing on the part of controllers. Yet as someone who has spent many hours visiting ATC facilities and observing controllers at work while plugged in beside them, I can testify that these folks are amazingly sharp, skilled, and well-trained professionals who do their jobs exceptionally well.

So why can’t these hotshot controllers separate IFR aircraft nearly as efficiently as VFR pilots are able to separate themselves? My conclusion was that the very nature of the separation task is fundamentally different:

A pilot is concerned solely with the one aircraft that he’s flying, but a controller must keep track of several aircraft at once. Give a person several things to do at once—even simple things like head-patting and tummy-rubbing—and his performance in each task drops sharply. Keeping track of a high-speed airplane is considerably harder than either head-patting or tummy rubbing. Keeping track of a dozen such airplanes travelling in random directions at random altitudes is simply beyond the capabilities of any human.

Our IFR system is designed to simplify the controller’s job to the point that it is within the realm of human capability. It does this primarily by eliminating the amount of randomness the controller must deal with. It strings airplanes along a few well-defined airways/SIDs/STARs, confines them to a few standard altitudes, and sometimes slows them down to a few standard speeds. Doing these things makes the airplanes much easier for the controller to keep track of and keep separated, but it also wastes most of the available airspace and reduces the capacity of the system.

Do we really need ATC?

It seemed to me that the capacity of the IFR system could be vastly increased if we could just stop relying on controllers to separate airplanes and enable pilots to self-separate, much as they do when flying VFR. In 1970 when I wrote the article, we were right on the cusp of two major technological breakthroughs that I believed had the potential to make that possible.

GPS ConstellationOne of them was the promise of accurate satellite navigation. The Naval Research Laboratory had launched its Timation satellites in 1967 and 1969, the first ones to contain accurate atomic clocks suitable for navigation. Meantime, the Air Force’s Space and Missile System Organization was testing its more advanced system (codenamed Project 621B) for aircraft positioning between 1968 and 1971. These were the progenitors of today’s GPS system—something I could see coming in 1970, although a seriously underestimated how long it would take to become operational. The first constellation of 10 “Block-I” GPS satellites wasn’t in orbit until 1985, and the system’s full operational capability wasn’t announced until 1995.

MicroprocessorThe second breakthrough was large-scale integration (LSI)—the creation of integrated circuits containing tens of thousands of transistors on a single silicon chip—and the emergence of the microprocessor. Microprocessors weren’t yet invented in 1970 when I wrote the article, but as a computer scientist (my day job at the time) I could see them coming, too. As it turned out, Intel introduced its 4004 microprocessor in 1971, its 8008 in 1972, and the 8080 (which really put microprocessors on the map) in 1974. This watershed development made it feasible to equip even small GA airplanes with serious computing power.

The ATC system of tomorrow

Traffic DisplayIn my 1970 Air Facts article, I painted a picture of the kind of ATC system these new technologies—GPS and microcomputers—would make possible. I postulated a system in which all IFR aircraft and most VFR aircraft were equipped with a miniaturized GPS receiver that continually calculated the aircraft’s precise position and a transmitter that broadcast the aircraft’s coordinates once per second. A network of ground stations would receive these digital position reports, pass them to ATC, and rebroadcast them to all aircraft in the vicinity. A microcomputer aboard each aircraft would receive these digital position reports, compare their coordinates with the position of the host aircraft, evaluate which aircraft are potential threats, and display the position, altitude and track of those threat aircraft on a cockpit display.

Such a cockpit display would enable IFR pilots separate themselves from other aircraft, much as VFR pilots have always done. It would permit them to fly whatever random routes, altitudes and speeds they choose, giving them access to the same “big sky” that VFR pilots have always enjoyed.

I theorized that pilots are highly incentivized to self-separate and would do a much better job of it than what ground-based air traffic controllers can do. (Just imagine what driving your car would be like if you weren’t allowed to self-separate from other vehicles, and instead had to obtain clearances and follow instructions from some centralized traffic manager.)

What took so long?

NextGen controllerWhen I re-read that 1970 article today, it’s truly eerie just how closely the “ATC system of the future” I postulated then resembles the FAA’s “Next Generation Air Transportation System” (NextGen) that the FAA started working on in 2007 and plans to have fully operational in 2025. Key elements of NextGen include GPS navigation and ADS-B—almost precisely as I envisioned them in 1970.

I was wildly overoptimistic in my prediction that such a system could be developed in as little as five years. If the FAA does succeed in getting NextGen fully operational by 2025, it will be the 55th anniversary of my Air Facts article.

NextGen also includes improved pilot/controller communication (both textual and VOIP) and various improvements designed to allow use of more airspace and random routes. Sadly, it stops well short of transferring responsibility for separating IFR aircraft from ATC to pilots as I proposed in 1970—although our aircraft will have the necessary equipment to do that if the FAA would just let us. Maybe that’ll have to wait another five decades until NextNextGen is deployed (and there’s an autonomous self-piloting octocopter in every garage).

Mike Busch is arguably the best-known A&P/IA in general aviation, honored by the FAA in 2008 as National Aviation Maintenance Technician of the Year. Mike is a 8,000-hour pilot and CFI, an aircraft owner for 50 years, a prolific aviation author, co-founder of AVweb, and presently heads a team of world-class GA maintenance experts at Savvy Aviation. Mike writes a monthly Savvy Maintenance column in AOPA PILOT magazine, and his book Manifesto: A Revolutionary Approach to General Aviation Maintenance is available from Amazon.com in paperback and Kindle versions (112 pages). His second book titled Mike Busch on Engines was released on May 15, 2018, and is available from Amazon.com in paperback and Kindle versions. (508 pages).

Alaska IFR Survey: What do we need?

The FAA is undertaking a modernization of the National Airspace System (NAS) , and is moving to a space-based system.  While we will have ground based navigation aids for the foreseeable future, GPS based navigation has clearly become the dominant technology, and is changing the nature of our IFR enroute navigation structure.  Plans are already underway to update the low and high altitude system in the lower 48 states, but as we all know, well—Alaska is different.

Alaska's low altitude enroute infrastructure is the topic of a survey for IFR pilots who fly there.

Alaska’s low altitude enroute infrastructure is the topic of a survey for IFR pilots who fly there.

Recognizing that we have strong reliance on aviation for basic transportation in the state, the FAA is taking Alaska’s specific needs into account by establishing an advisory group to consider the needs of Alaska’s low-altitude (below 18,000’) IFR enroute system.  To prepare for this undertaking, AOPA and the Alaska Airmen Association are partnering on a survey of IFR pilots who fly in Alaska.  The survey will help define how you use the low altitude enroute IFR system today, and what your needs are for the future.

This information will help us advocate for your needs as the FAA looks at options to make changes to the NAS in Alaska.  While this effort is focused only on Alaska, the results will be integrated into other efforts around the country as we move to a space-based system.

If you are an active IFR pilot, please take the few minutes to take this online survey.  Click here to take the survey now.

FAA Upgrades Alaska Aircraft to National ADS-B Standard

It isn’t always best to be an early adopter of a new technology.  Aircraft owners in Alaska that participated in the FAA demonstration program to implement ADS-B were among the first in the nation to experience the benefits of this new technology. Today ADS-B has become a core element of NextGen.  But when the FAA finally approved a technical standard for NextGen, the prototype equipment didn’t meet that standard.  Now FAA is offering to upgrade those aircraft that were “early equippers” so they won’t be left behind.

ADS-B display showing traffic during the Capstone Demonstration Program

ADS-B display showing traffic during the Capstone Demonstration Program

Background
From 1999 to 2006, FAA conducted an operational demonstration program in Alaska to address some serious aviation safety issues.  Known as the Capstone Program, FAA used Alaska as a test bed to launch a new technology, Automatic Dependent Surveillance-Broadcast, better known as ADS-B.  This GPS-based system broadcasts (automatically) an aircraft’s location once a second, allowing another “equipped” aircraft to receive that information—a powerful tool for collision avoidance!

When within range of a ground radio, additional benefits become available.  Your aircraft position may be tracked by ATC, similar to what ATC radars do today—but with better accuracy in both time and space. If you fail to reach your destination, your ground track may speed search and rescue. But there is more… Ground stations allow aircraft to receive weather reports, NextRad weather radar and other information.  (If you are not familiar with ADS-B, AOPA has an online course which will walk you through the basics).

To obtain these benefits, the aircraft must be equipped.  In the course of the Capstone Program, FAA bought and installed the necessary equipment in about 400 aircraft in Alaska. Most of these aircraft operated commercially and were flying in the system on a daily basis, although some GA aircraft were included in the demonstration.  During this time, a few brave souls invested their own money and equipped their aircraft in order to receive the benefits of real-time traffic and weather in the cockpit.  Recognizing the benefits to aviation access and safety that this new technology represented, the Alaska Legislature adopted a low-interest loan program to help individuals and commercial operators (based in Alaska) to purchase and install this equipment in their aircraft.  The loan program continues today.

After the Capstone Program ended, a national standard for ADS-B avionics was adopted, however the original “demonstration” equipment no longer met the new standard.  To address this problem, FAA has launched a one-time project to upgrade the equipment installed in aircraft that were ADS-B equipped by November 30, 2013, to new “rule compliant” equipment. This includes not only the aircraft equipped by the FAA, but any Alaska-based aircraft that had invested in this technology prior to that date.  FAA has hired an installer who will be operating from different bases around the state on a defined schedule to make the upgrades.  Owners wishing to participate will be required to sign agreements, to have some equipment removed and new, rule-compliant avionics installed.  It may not be the way you wish to upgrade your airplane, but if you qualify, it would be worth checking with FAA to see if this upgrade program could work for you.  If you own an Alaska based aircraft equipped with Capstone-era equipment, contact the FAA Surveillance and Broadcast Services Program (907-790-7316 or [email protected]) to see if this helps upgrade your airplane!

Remember when?

Flying as an industry has undergone some dramatic changes in the last two decades, and it can be a bit mind-boggling to look back and consider the impact of some of those changes.

When I first got hired, direct deposit had just been introduced. Knowing what I know now, I can’t imagine the challenges of this job when you faced the possibility of not being able to access your pay check for up to two weeks because you wouldn’t be home to cash it. Married guys could make special arrangements, but the single guys…not so much.

Most of the pilots I talked to while this transition was going on told me that over time they had been forced to build a reserve in their checking accounts so that they could pay their bills. Plan B was to get a line of credit from the bank, but that wasn’t always easy, especially for bottom-feeder first officers. Bear in mind too that getting your check deposited was only part of the battle. Back then, you still had to write checks for everything. I can easily remember when a roomful of pilots would bring their bills and their checkbooks with them to work, and would spend a break or an overnight in the hotel getting their bills in the mail. Online bill pay was a pipe dream.

Speaking of the Internet, nothing else has had such a dramatic effect on the way airlines run. It has put travel agents in museums, and people can check in at home the day before a flight. For the flight crews, it is now possible to fly a career and only talk to a chief pilot or flight attendant overseer on the day you interview and the day you retire. Email communications take care of most issues, and even changes in our schedules can be acknowledged on a cell phone screen. Pilots dread talking to
schedulers, and online acknowledgement makes that totally unnecessary now.

The cell phone has revolutionized our lives, and while it isn’t always for the better, it often is. For pilots, checking weather radar is right at the fingertips, as is tracking the location of your next ship, calling MX Control without having to go back to the gate, or putting in a bid at the last minute because you forgot to do it on vacation.

Speaking of which, back in the day, a pilot on vacation had to call a trusted friend–with a calling card, from a pay phone–and ask that person to submit his or her monthly bids. Those bids were often blind, because with no internet, you couldn’t see the bid packets and the trips that were available. The joke was to always call someone senior to you who wouldn’t have a motivation to manipulate your bid, or call the secretary in the office. Our Mother Hen was the best, and she would not only put in your bid, she also would tell you how to improve it. Now, even if you are on the other side of the globe, you can put in an accurate bid on time…if you remember.

Some things never change, and even those that supposedly will may not pan out well (I personally think the whole NextGen project will just be huge quantities of money wasted). But many of the changes are such that the people that preceded me or you in this industry wouldn’t even recognize it. Not being able to check the weather on my phone? I shudder at the thought.—Chip Wright