Menu

Tag: ATC (page 1 of 2)

Say it right

There seems to be a spate of bad radio use lately, and I don’t know where it comes from, but it needs to stop. The FAA is very clear when it comes to proper radio phraseology. In fact, it might be the only thing that they are so clear about, and the requirements apply to them (in the form of ATC) and us.

At airports around the country, I’ve noticed an uptick in the number of pilots who are dropping the ball when it comes to reading back hold-short clearances. If the controller says, “Airman 123, right on Echo and hold short of Runway 22 at Golf,” you are required to read back the clearance verbatim.

What I’ve noticed—and increasingly agitated controllers have noticed as well—is that pilots are reading back the clearance in an abbreviated format, such as, “Hold short at Golf.” Or, “Airman 123 right on Echo to Golf,” or some other variation. None of those is sufficient. The proper read-back must have the hold-short point as well as the full call sign. It is the only way for controllers to verify that their instruction was received and understood.

This is particularly important at airports where runway crossings are unavoidable. Newark, Orlando, Phoenix, Las Vegas, Atlanta, Washington Dulles, San Francisco, and Seattle are a few that come to mind. All have parallel runways, and the general convention is to use the innermost runway for departures and the outermost for landings. Controllers need to keep the flow moving, so they will usually line up a number of airplanes at various crossing points for the departure runway, and when those points are full, a slew of airplanes will be cleared to cross.

The proper read-back does two things: First, it ensures that a crew doesn’t enter an active runway, and second, it makes sure that there is not an inadvertent back-up at one of the crossing points. This can be critical at an airport like San Francisco or Newark, where two airplanes may be nose to tail, and the trailing airplane may not be totally clear of the landing runway.

Seattle is an airport where the hold-short call is important for another reason. There are three parallel runways (34 and 16 L/C/R), and the controllers will frequently direct a crew to cross the center runway immediately after clearing the arrival runway…but not always. It’s also important to remember that you will never be granted permission to cross two runways in the same transmission. ATC is required to wait until you cross the first runway before clearing you to cross the second.

Radio shortcuts are fairly common. Pilots make these transgressions more frequently. Controllers have little patience for poor hold-short clearance read-backs. Besides, they have the big picture of what is going on at the airport.

Another area where pilots get lazy or rushed is the proper phraseology of a “climb via” or “descend via” clearance, which can also be a gotcha because of potential intermediate altitude requirements. Your best bet? Skip the shortcuts, and transmit correctly on every call. This is basic IFR airmanship.

It’s About Time!

I just added ADS-B Out to my airplane. I’ve been looking forward to this moment for a very long time—48 years to be exact.

Air Facts (May 1970)

Air Facts (May 1970)
click image to read article

It was 48 years ago that my very first aviation article was published. Its title was “The Role of Computers in Air Traffic Control.” I was 26 years old at the time, not long out of college, and starting a career in computer software at the dawn of the computer age. I’d only been a pilot for five years and an aircraft owner for two.

I timidly submitted the 3,000-word manuscript to Leighton Collins (1903-1995), the dean of general aviation journalists (and Richard Collins’ dad). Leighton founded his magazine Air Facts in 1938, the first GA magazine to focus primarily on safety. In the ‘50s and ‘60s, Leighton became a pioneer in using GA airplanes to fly IFR, something that was considered risky business at the time. In 1970, I was a newly-minted CFII and Skylane owner, and Leighton was my hero and Air Facts my bible.

Leighton loved my article, and published it in the May 1970 issue of Air Facts.  I was thrilled. I was also hooked and went on to write more than 500 published aviation articles between then and now.

How big is the sky?

I’d been instrument-rated for about four years when I wrote that article, and had thought quite a bit about the differences between VFR and IFR flying:

A pilot flying VFR in clear weather is unlikely to see more than a few other aircraft on a typical flight; to him the sky seems to be a rather empty place. Yet to the pilot stuck in an IFR hold with an estimated-further-clearance time forty-five minutes away, the sky seems to be an order of magnitude more crowded. Why? Clearly there is no shortage of airspace; every VFR pilot knows that. The aircraft flying under IFR have the best equipment and the most proficient pilots aboard. Where does the congestion come from?

My conclusion was that the fundamental difference between VFR and IFR lies in who is separating aircraft. VFR pilots are responsible for their own separation, while IFR pilots rely on air traffic controllers to keep them separated from other traffic. Thus, I reasoned, the comparatively low capacity of the IFR system must be attributable to some failing on the part of controllers. Yet as someone who has spent many hours visiting ATC facilities and observing controllers at work while plugged in beside them, I can testify that these folks are amazingly sharp, skilled, and well-trained professionals who do their jobs exceptionally well.

So why can’t these hotshot controllers separate IFR aircraft nearly as efficiently as VFR pilots are able to separate themselves? My conclusion was that the very nature of the separation task is fundamentally different:

A pilot is concerned solely with the one aircraft that he’s flying, but a controller must keep track of several aircraft at once. Give a person several things to do at once—even simple things like head-patting and tummy-rubbing—and his performance in each task drops sharply. Keeping track of a high-speed airplane is considerably harder than either head-patting or tummy rubbing. Keeping track of a dozen such airplanes travelling in random directions at random altitudes is simply beyond the capabilities of any human.

Our IFR system is designed to simplify the controller’s job to the point that it is within the realm of human capability. It does this primarily by eliminating the amount of randomness the controller must deal with. It strings airplanes along a few well-defined airways/SIDs/STARs, confines them to a few standard altitudes, and sometimes slows them down to a few standard speeds. Doing these things makes the airplanes much easier for the controller to keep track of and keep separated, but it also wastes most of the available airspace and reduces the capacity of the system.

Do we really need ATC?

It seemed to me that the capacity of the IFR system could be vastly increased if we could just stop relying on controllers to separate airplanes and enable pilots to self-separate, much as they do when flying VFR. In 1970 when I wrote the article, we were right on the cusp of two major technological breakthroughs that I believed had the potential to make that possible.

GPS ConstellationOne of them was the promise of accurate satellite navigation. The Naval Research Laboratory had launched its Timation satellites in 1967 and 1969, the first ones to contain accurate atomic clocks suitable for navigation. Meantime, the Air Force’s Space and Missile System Organization was testing its more advanced system (codenamed Project 621B) for aircraft positioning between 1968 and 1971. These were the progenitors of today’s GPS system—something I could see coming in 1970, although a seriously underestimated how long it would take to become operational. The first constellation of 10 “Block-I” GPS satellites wasn’t in orbit until 1985, and the system’s full operational capability wasn’t announced until 1995.

MicroprocessorThe second breakthrough was large-scale integration (LSI)—the creation of integrated circuits containing tens of thousands of transistors on a single silicon chip—and the emergence of the microprocessor. Microprocessors weren’t yet invented in 1970 when I wrote the article, but as a computer scientist (my day job at the time) I could see them coming, too. As it turned out, Intel introduced its 4004 microprocessor in 1971, its 8008 in 1972, and the 8080 (which really put microprocessors on the map) in 1974. This watershed development made it feasible to equip even small GA airplanes with serious computing power.

The ATC system of tomorrow

Traffic DisplayIn my 1970 Air Facts article, I painted a picture of the kind of ATC system these new technologies—GPS and microcomputers—would make possible. I postulated a system in which all IFR aircraft and most VFR aircraft were equipped with a miniaturized GPS receiver that continually calculated the aircraft’s precise position and a transmitter that broadcast the aircraft’s coordinates once per second. A network of ground stations would receive these digital position reports, pass them to ATC, and rebroadcast them to all aircraft in the vicinity. A microcomputer aboard each aircraft would receive these digital position reports, compare their coordinates with the position of the host aircraft, evaluate which aircraft are potential threats, and display the position, altitude and track of those threat aircraft on a cockpit display.

Such a cockpit display would enable IFR pilots separate themselves from other aircraft, much as VFR pilots have always done. It would permit them to fly whatever random routes, altitudes and speeds they choose, giving them access to the same “big sky” that VFR pilots have always enjoyed.

I theorized that pilots are highly incentivized to self-separate and would do a much better job of it than what ground-based air traffic controllers can do. (Just imagine what driving your car would be like if you weren’t allowed to self-separate from other vehicles, and instead had to obtain clearances and follow instructions from some centralized traffic manager.)

What took so long?

NextGen controllerWhen I re-read that 1970 article today, it’s truly eerie just how closely the “ATC system of the future” I postulated then resembles the FAA’s “Next Generation Air Transportation System” (NextGen) that the FAA started working on in 2007 and plans to have fully operational in 2025. Key elements of NextGen include GPS navigation and ADS-B—almost precisely as I envisioned them in 1970.

I was wildly overoptimistic in my prediction that such a system could be developed in as little as five years. If the FAA does succeed in getting NextGen fully operational by 2025, it will be the 55th anniversary of my Air Facts article.

NextGen also includes improved pilot/controller communication (both textual and VOIP) and various improvements designed to allow use of more airspace and random routes. Sadly, it stops well short of transferring responsibility for separating IFR aircraft from ATC to pilots as I proposed in 1970—although our aircraft will have the necessary equipment to do that if the FAA would just let us. Maybe that’ll have to wait another five decades until NextNextGen is deployed (and there’s an autonomous self-piloting octocopter in every garage).

Mike Busch is arguably the best-known A&P/IA in general aviation, honored by the FAA in 2008 as National Aviation Maintenance Technician of the Year. Mike is a 8,000-hour pilot and CFI, an aircraft owner for 50 years, a prolific aviation author, co-founder of AVweb, and presently heads a team of world-class GA maintenance experts at Savvy Aviation. Mike writes a monthly Savvy Maintenance column in AOPA PILOT magazine, and his book Manifesto: A Revolutionary Approach to General Aviation Maintenance is available from Amazon.com in paperback and Kindle versions (112 pages). His second book titled Mike Busch on Engines was released on May 15, 2018, and is available from Amazon.com in paperback and Kindle versions. (508 pages).

ATC and pilots: When to keep your mouth shut and when to speak up

This sounds a bit pathetic, but most of the professional pilots I’ve known in my life have been smart alecks, me included … always ready with an opinion, whether anyone asked for it or not. We’re all control freaks to some degree I suppose, not an earth-shattering revelation of course, because those are the kind of people you want around when it’s time to grab the controls and say, “I’ve got it.”

Sometimes knowing when not to grab the microphone in the cockpit though, can be just as important, especially for me when it comes to ATC at least. I spent a decade of my aviation life in a control tower and behind a radar scope, which was just enough to qualify me – by my standards of course – as an expert.

MSN

Madison Wi (MSN)

Case in point to grabbing that microphone occurred at Madison, Wis., a few weeks ago with a student in the Cirrus. We were VFR in right traffic for Runway 31 and requesting multiple “option approaches,” the ones that leave it to us to decide whether we’ll make a full stop, stop and go, low approach, or whatever might be left. The long runway, 18-36, was closed for construction and some itinerant traffic was using Runway 3-21. BTW, tower assigned us Runway 31 which I did wonder about with traffic on Runway 3, but then since every controller runs their traffic patterns a little differently I thought no more about it.

After the third or fourth option approach, the tower cleared us to land on Runway 31, but never explained why. On touch down, I simply forgot and told the student “let’s go” and he added full power and reduced the flap setting. As soon as we broke ground the “cleared to land” part flashed in my mind. Maybe 100 feet in the air, the local controller in MSN tower firmly reminds me that when he says cleared to land, he means cleared to land. I really tried not to respond, but of course I did, “Sorry about that. My fault. But 18/36 is closed right?” as in, so what was the real problem other than my failure to follow orders. I honestly didn’t know. Someone in the tower keyed the mic as if they were going to say something and then decided against it. We landed about 15 minutes later and the ground controller reminded me that I had earlier been cleared to land on Runway 31 and that they really need me to follow instructions in the future. Of course you know I keyed the microphone and asked again what the issue was other than blowing the order … “Did I conflict with some other aircraft?” “No, but you were cleared to land, not for an option,” he said. Since the other pilot was becoming uncomfortable with the exchange I just said, “Roger. Thanks,” and let it go. After all, I did blow it. I just would have liked to have known a bit more, but I decided to just let it go.

ENW

Kenosha Wi. (ENW)

Jump ahead a month or so and I’m again acting as CFI in the traffic pattern at Kenosha, Wis., this time having watched the other pilot I’m flying with land out of a really nicely handled circling instrument approach. We decide to stay in the VFR traffic pattern for a bit so the controller in the tower – obviously working both tower and ground himself – taxies us to Runway 7 Left. As we taxi, I hear him chatting with a Citabria pilot he’s sending to Runway 7 Right. About now I became occupied watching my pilot prepare for another takeoff.

Some part of my brain must have heard the tower clear the Citabria for takeoff from the right runway with a left turn out, just before he cleared us from the left runway, but it remained one of those distant notes in my brain until we were about 200 feet in the air. That’s when I saw the taildragger cutting across our path from the right. I instinctively told the pilot I was flying with to head right behind the Citabria as the ENW controller mentioned him as “traffic ahead and to our right.” He was a lot more than that. If we hadn’t turned, it would have been close.

The pilot flying with me looked at me in wonderment as I just shook my head and keyed the microphone … “nice tower.” No response.

I rang the tower manager a few days later on the phone because I wanted him to know how close I thought we would have been had we not banked right after takeoff. I told him I thought the ENW tower controller just plum forgot about the taildragger off the right when he cleared us for takeoff. I got it. It happens. I just wanted to see if I’d missed something here too.

Sad to say but the tower manager at Kenosha never rang back. This is where it becomes tough for me. Should I ring the tower manager again and risk sounding like a know-it-all? I make mistakes too. What do you think? Let me know at [email protected].

Special VFR changes at Anchorage

Special VFR (SVFR) procedures allow us to get in or out of Class B, C, D or E surface areas when the weather is below basic VFR, but still good enough to fly. In some parts of Alaska they are used routinely, where weather conditions are frequently dicey. A national revision of FAA internal policy caused the Air Traffic staff in Anchorage to re-examine their procedures, which initially caused concern within the pilot community—as Anchorage controllers often respond to requests for “specials” to get pilots in and out of Lake Hood and Merrill Field. When first announced, the use of radar as a tool for separation was the focus. The prospect of changes that could severely impact traffic in and out of area airports loomed large. I am pleased to report, thanks to the efforts of FAA Air Traffic Organization staff in Alaska, that procedural changes are now expected to streamline the process, and many cases increase ATC’s ability to accommodate SVFR traffic.

Special VFR procedures are a tool sometimes needed to deal with conditions around an airport, but should be used with extreme caution.

Special VFR procedures are a tool sometimes needed to deal with weather conditions around an airport, but should be used with extreme caution.

At a recent meeting of the Alaska Aviation Coordination Council, Merrill Tower Manager Brian Ochs shared the good news with representatives from the aviation industry. A challenge for controllers was the national guidance based on a single surface area. This didn’t adequately address the Anchorage situation with multiple adjoining surface areas: Anchorage International (ANC), Lake Hood (LHD), Merrill Field (MRI), Elmendorf (EDF), and Bryant Army Airfield (FRN). A working group was established across the Anchorage facilities to work the issue—spurred on by concerns expressed from aviation groups and local operators. Last March, FAA held a Safety Risk Management panel meeting, and invited AOPA and other stakeholder representatives to evaluate their plan. In the subsequent months, FAA reviews were held and approval ultimately received to implement new internal procedures.

SVFR Process
The process from a pilot perspective remains unchanged. We must ASK for a Special VFR clearance—the controller can’t offer it to us. Ask Clearance Delivery if you want to depart ANC or LHD, or Ground Control at MRI. Arriving traffic may request a special from Anchorage Approach. To address the issue of adjacent, “wing tip to wing tip” operations, ATC defined two cases, high and low visibility SVFR. During High Visibility SVFR conditions, the ceiling is a little below 1,000 ft, but visibility is three miles or greater. When these conditions exist, each facility can issue specials independently. When the visibility comes down to less than 3 miles, a different set of procedures go into effect, and coordination is required across adjacent surfaces. Priority will be given to inbound traffic, and outbound flights will be staggered to reduce congestion over the Point McKenzie area.

Feedback requested
We owe a big THANK YOU to the Air Traffic Control staff for going the extra mile to take what could have been a serious impact on access to the Anchorage airports, and developing procedures that may increase the flow of SVFR traffic. When fall weather arrives, and these procedures get more use, ATC would like your feedback. If you have comments or concerns, please contact: David Chilson, Support Manager, FAA Alaska Terminal District, [email protected], 907-271-2703. Thanks also to the pilots and operators who communicated their concerns to FAA when the prospect of these changes first was announced, and who participated in the Safety Risk Management Panel. This spirit of cooperation has helped reach a better outcome than I think anyone expected when the national changes were first announced!

Post Script on SVFR
While it is nice to have SVFR procedures in our tool kit, we should be extremely cautious in their application. Conditions that require SVFR by definition mean we are working under restricted circumstances, of either ceiling or visibility, which limit our options. We should be very familiar with the airport, local terrain and weather conditions before asking for a special. Under stable conditions a special can speed us on our way to better weather near by, but in other cases they may be leading us into something worse. Check out AOPA’s Air Safety Institute’s article “How safe is special VFR” to explore this topic in greater detail.

Instrument Changes: Approaches without IAFs and Vectors to Fixes

 

00285R11

My article about a “new” third way to start an approach, by flying to the intermediate fix (IF), drew many comments, including one asking “wouldn’t it be best to establish yourself earlier on the approach earli
er than the IF.” Another flight instructor explained that, in the case of the GPS 31 approach into Palo Alto, the IAF locations are inconvenient (unless you’re flying in from Japan!) and are over mountainous terrain, which is why most pilots start this approach at the IF. Now, even the FAA doesn’t consider an IAF a necessity and many approaches are charted without any IAFs!

First, my thanks to longtime friend Hilton Goldstein, for pointing out a number of approaches that lack an IAF. Hilton is the brains behind WingX, an integrated aviation app for the iPhone and iPad that provides just about every function a pilot might need for planning and flying a flight. He reviews every new instrument procedure chart before it goes into WingX, which is how he spots interesting procedures.

But first let’s go to the source, the Air Traffic Control Handbook, Order 7110.65U. Last year, section 4-8-1 Approach Clearance, was updated and now says in part:

“Standard instrument approach procedures (SIAP) must begin at an initial approach fix (IAF) or an intermediate fix (IF) if there is not an IAF.” [emphasis added].

Newark Liberty International (KEWR) is a great example. By my count, they have a total of 14 approaches that lack an IAF; all begin at an IF. An example is the RNAV (GPS) RWY 11 approach, which starts at the IF, MUFIE. Note the chart is marked RADAR REQUIRED, as are all charts for procedures starting at an IF.

Looking for the RADAR note is one possible clue that an approach might lack an IAF and start at an IF. At KEWR, 14 approaches have that restriction and all start at an IF. Well technically, one of them doesn’t have an IF, but it was probably an oversight.

If you look at the VOR RWY 11 at KEWR, you’ll note it starts at PINEZ. The next fix, LOCKI, can be identified as the Final Approach Fix (FAF) since it shows a Maltese cross at LOCKI in the profile view. An intermediate segment begins at an IF and terminates at an FAF, in this case LOCKI. Thus PINEZ should be an IF, though it’s unmarked. So technically, the FAA cannot clear an aircraft to start this approach at PINEZ, since per JO 7110.65U, an approach must begin at “an intermediate fix (IF) if there is not an IAF.” My guess is “IF” will be added to PINEZ in a future chart revision.

Why don’t these approaches have an IAF? Probably because it simplifies things in what’s already some of the most congested airspace in the United States. Besides, per the FAA Instrument Procedures Handbook, “The purpose of the initial approach segment is to provide a method for aligning the aircraft with the intermediate or final approach segment.”

In most cases, an aircraft can start at an IAF from any direction. Depending upon the angle of arrival at an IAF, an aircraft may need a lot of space and time to get turned around and straightened out, hence the need for the initial segment.

But airliners flying into a major metropolitan airport like Newark are usually vectored in an orderly line more than 100 miles out from the start of an approach. Thus they’re well lined up and hairpin turns aren’t required as they start an approach. In that kind of structured environment, there’s no need for an initial segment to get lined up and hence no reason not to start at an IF. So what do you think? Will the IAF slowly fade away in the future, except in non-radar environments?

Vectors to Fixes Outside the FAF
Another change last year in section 4-8-1 of 7110.65U says that aircraft can now be vectored to start an approach at any fix, as long as it’s 3 NM or more outside of the FAF. Typically in the past, vectors have been to join the final approach course along a leg, not to a particular fix (except for the IAF and IF). Here’s the exact text:

“Where adequate radar coverage exists, radar facilities may vector aircraft to the final approach course, or clear an aircraft to any fix 3 NM or more prior to the FAF along the final approach course in accordance with Paragraph 5-9-1, Vectors to Final Approach Course, and Paragraph 5-9-2, Final Approach Course Interception.”

Looking at Paragraph 5-9-2, one finds that controllers must assign a heading that cannot exceed 30° from the final approach course. Thus we end up with the following maximum intercept angles for joining the final approach course at a fix:

  • 30° when at fixes outside the FAF, except for:
  • 90 ° for intercepts at the IF, and
  • any angle for intercepts at an IAF.

I’d venture to say that the majority of approaches don’t have any other fixes outside the FAF, other than the IF and IAF, which were covered by prior rules. Yes, you’ll find lots of feeder fixes outside the IAF, but you can typically join these at any angle. So while this rule change may give pilots and controllers another option on some approaches, it’s not clear to me that it offers much new benefit. If you’re aware of an approach where having this option offers a significant operational advantage, please share it with readers in the comments.

One thing we know for sure that’s constant is change. And that the rate of change is accelerating. Which means pilots and controllers alike will need to spend even more time learning about future changes and how they affect they way we fly. Perhaps that’s why a pilot certificate is often called a license to learn.

How to Request to Start an Approach at the Intermediate Fix (IF)

Requesting to be cleared "Direct to" the IF can result in a hairpin turn that's not permitted by the AIM.

Requesting to be cleared “Direct to” the IF can result in a hairpin turn that’s not permitted by the AIM.

Instrument pilots know that there are two ways to start an instrument approach: they can get vectors or fly direct to an initial approach fix (IAF). Last month, I wrote about the “new” third way to start an approach, by flying to the intermediate fix (IF). This month I planned to write about the challenges in requesting to start an approach at an IF. Coincidentally, the day this article was due, the problem I planned to describe occurred…again.

I added quotes to “new” because, while this third method has been described in section 5-4-7(i) of the Aeronautical Information Manual (AIM) since 2006, I expect it will take many years before this information fully permeates the pilot and controller populations. Why so long? Partly because old habits in aviation die slowly and because standard IFR phraseology is confusing when applied to starting at an IF.

The confusion is not unlike the language issues that led to “Position and hold” being changed to “Line up and wait,” a change I enthusiastically supported. Countless times I’ve been in the cockpit with a pilot who confused “Position and hold” with “Hold short,” presumably because they both contained the word “hold.” In this case, potential confusion exists with the words “vectors” and “direct to,” when used to request to start an approach at an IF.

In September 2012, I exchanged several emails about this problem with a friend who is a supervisor at the Northern California TRACON. In my first email, I wrote in part,

“In my books, I tell pilots that there are three ways to fly an instrument approach:
1. vectors,
2. own navigation (or pilot navigation) to an IAF, and
3. a third method, which appeared in the Aeronautical Information Manual beginning in 2006 that allows pilots to start at an IF under certain circumstances (see extract from my G1000 Book below).

“We have short, well understood names that pilots use to ask controllers for the first two methods. But I’m not aware of a convenient name for pilots to use when requesting this third method. Are there quick, easy names that controllers use to describe this third method? Or should we be inventing a new name for it and promoting it among the aviation community?”

Why the need for a “quick, easy name?” Because for years, I’d sometimes had to clarify my request to start at an IF by adding that I’d like “to be vectored to a point from which you can clear me direct to DOCAL with a turn of less than 90 degrees.” That’s a mouthful and an inefficient use of radio time at a busy TRACON.

The reply from my supervisor friend was that the consensus at the facility was that a pilot should name the approach and ask to start at the name of the IF. In the case of the GPS 31 approach at Palo Alto, a pilot would ask to “start the approach at DOCAL,” Alternatively, you might consider requesting “to start the approach at the Intermediate Fix,” which should trigger the controller to remember the 90 degree turn rule.

Potential Confusion in Phraseology
Using the words “vectors” or “direct to,” works great when a pilot is requesting to start an approach with vectors or at an IAF. But they can be confusing when used to start an approach at an IF.

“Vectors” means you’ll be guided to join an approach at least several miles outside of the final approach fix (FAF). Requesting “vectors to DOCAL” could make sense, except that the JO 7110.65U tells controllers that when giving vectors, they are to turn pilots to within 30 degrees of the final approach course, not the 90 degrees permitted at an IF. So you don’t really want “vectors” to the IF.

If instead of asking to “start the approach at DOCAL” a pilot asks to be cleared “Direct to DOCAL,” controllers will sometimes take that literally and clear a pilot from their present position to the IF. But this can result in nearly a 180 degree turn at the IF, which isn’t permitted under 5-4-7. And that’s exactly what happened to me today. I had just crossed over Moffett Field and was essentially on a downwind leg to the approach. The controller asked whether we wanted vectors or to start the approach at DOCAL. I chose the latter and was immediately cleared “Direct to DOCAL.”

I’m not sure why the controller did that, though I’m guessing he was familiar with the 90 degree rule in 5-4-7. Shortly afterwards, I said “we’d like to continue on this heading until we can make a turn of less than 90 degrees at DOCAL,” to which he said “That will be fine.”

Why so casual? We weren’t IFR, but were doing a VFR practice approach, where separation standards are relaxed. Under those circumstances, I’ve seen controllers not require a turn of less than 90 degrees at an IF, a practice that may confuse pilots and controllers alike about the proper way to start an approach at an IF.

Get on the Same Page as the Controller
Regardless of how you request an approach, or how you are cleared to an approach, it’s important to be on the same page as the controller. If you have any doubt as to whether the controller and you have the same game plan in mind, request clarification. In the meantime, don’t hesitate to ask to “start the approach at the IF” if that’s how you would like to fly the approach.

Three Ways to Start an Instrument Approach: Vectors, IAF and Intermediate Fix (IF)

KPAO GPS 31

A friend lamented on Facebook that the NDB procedure at the airport where he learned to fly is no longer available. He added  “For some reason it makes me a little sad.” I’m guessing his sadness had more to do with his feelings about learning to fly at that airport, than it did about flying an NDB approach. Or perhaps he was reminiscing about the pride he felt in mastering the NDB approach.

I used to enjoy the intellectual challenge of flying an NDB approach and the even greater challenge of teaching others to master it. But no more. There are no NDB approaches left in the S.F. Bay area where I teach and I say “good riddance.”

The approaches were inaccurate and difficult to fly and former Secretary of Commerce Ron Brown was killed when U.S. Air Force pilots failed to correctly fly a rare “dual NDB” approach. I’m much prefer to see pilots expend their intellectual horsepower on mastering flying IFR approaches with modern GPS receivers, which can be more work than learning NDB approaches, and staying up to date on rule changes.

One rule change that frequently causes confusion among pilots and controllers alike relates to the third way to fly an instrument approach. All instrument pilots know you can fly an approach with vectors or use pilot navigation to start at an IAF (initial approach fix). However there’s a third way that’s been around since 2006, but word about it has been slow to get out to pilots and even to a few controllers.

Pilots can now start an instrument approach, with some restrictions, by flying directly to the IF (intermediate fix). Just to remind those who may have forgotten, the initial segment of a typical instrument approach procedure starts at an IAF and ends at the IF. So typically the IF is the next fix after the IAF as you fly toward the airport.

You might be wondering, “What’s the big deal, why would I want to skip the IAF.” For many approaches it won’t matter, especially if the IAF is along your direction of travel toward the airport. But for some approaches it can save a few clicks on the Hobbs meter. For example, at my home airport of Palo Alto, Calif., the GPS 31 approach has two IAFs, but both are in the boonies and most pilots start the approach at DOCAL, the IF.

You’ll find the details about starting an approach at an IF in section 5-4-7(i) of the Aeronautical Information Manual (AIM), where it first appeared in 2006 (yes eight years ago!). However, you won’t read about it in the FAA’s Instrument Flying Handbook or even in the FAA Instrument Procedures Handbook, both of which are excellent publications.

The rule applies to all approach types, not just RNAV (GPS) approaches. Here’s the current text from the AIM:

ATC may clear aircraft that have filed an Advanced RNAV equipment suffix to the intermediate fix when clearing aircraft for an instrument approach procedure. ATC will take the following actions when clearing Advanced RNAV aircraft to the intermediate fix:

1. Provide radar monitoring to the intermediate fix.

2. Advise the pilot to expect clearance direct to the intermediate fix at least 5 miles from the fix.

NOTE – This is to allow the pilot to program the RNAV equipment to allow the aircraft to fly to the intermediate fix when cleared by ATC.

3. Assign an altitude to maintain until the intermediate fix.

4. Ensure the aircraft is on a course that will intercept the intermediate segment at an angle not greater than 90 degrees and is at an altitude that will permit normal descent from the intermediate fix to the final approach fix.

Here’s what it means to a typical GA pilot.

1) You need to be GPS equipped (which is the only practical way for most GA aircraft to be RNAV equipped). This let’s you find your way independently to the IF.

2) The controller might advise you that you’ll be starting the approach at the IF, but more typically, you’ll have already requested that of the controller.

3) You’ll be assigned an altitude to maintain until reaching the IF. Most likely you won’t be on a published segment of the approach until the IF, so you need to be assigned a safe altitude.

4) The controller cannot clear you directly to the IF until you’re in a position from which you can make a turn of less than 90 degrees to join the approach at the IF.

It’s the last part, making a turn of less than 90 degrees, where pilot and controller sometimes get confused. The idea is that the turn at the IF needs to be an easy one, much like turning left or right at the intersection of two streets. It can’t be a hairpin turn or resemble something like a U-Turn.

Think of it this way. If you were to draw a line on your chart at the IF that’s perpendicular to the intermediate segment, on one side of the line, the side farthest from the airport, you are allowed to fly directly to the IF, since the turn inbound is less than 90 degrees. If you’re on the other side of the line, the side closer to the airport, you can’t be cleared to the IF until after you’ve been vectored across the perpendicular line.

All of this presents some new challenges for pilots and controllers, especially if they’re unclear on the rule. We’ll talk more about those challenges….next month.

Diversions and aeronautical decision making

Aeronautical decision making (ADM) first began to appear in the training lexicon in a heavy fashion in the mid-1990s. It was always “there,” but it wasn’t necessarily a separate subject. Instructors were expected to simply incorporate the decision-making process into each lesson whenever and wherever possible. This sounds great on paper, and at times it even seems logical, but the reality is that the old adage that says that the airplane is a terrible classroom exists for a reason.

Dealing with diversions is a subject in the decision-making process for which a formal classroom session has always made sense. Diversions can take two broad forms in flight. The first is a change in the route but with no change in the destination. The second is a change in the final destination. The first is far more common, but the second is usually more significant. After all, if you are flying to Baltimore and have to divert to Frederick  because of weather, you have new set of problems on your hands. Just as with any other aspect of your life, the impact of such a significant change in plans can make you more resistant to executing the change in the first place.

At the airlines, the decision is often a bit easier, because the rules are so cut and dried. But that doesn’t change the fact that pilots generally are can-do people, and when other people are counting on you, you don’t want to disappoint them.
But one area in which diversions at the airlines are so different is the level of communication. I bring all of this up because more airlines are using ADM scenarios as part of the interview process. You are placed in a hypothetical but fairly realistic scenario in which something goes wrong, and you have to make a decision. Sometimes, the basic diversion decision is easy (“the airport is closed, so you will be diverting”) and sometimes it isn’t (“something smells bad in the cabin, but I don’t if it’s burned food or worse”).

The pressure is ratcheted up in some other fashion that will force you to make a decision quickly. Southwest and United airlines both give you a seven-minute window in which to assess the problem, evaluate the options, and come up with a solution. In some of the scenarios, you are short on fuel. In some, weather is a major factor. In others, it’s the ambiguity of the problem. But in all of them, the goal is to see you make a decision and stick with it.

At the airlines, you need to communicate with multiple entities, and this is where the two-person crew comes in handy. Someone needs to talk to air traffic control, while someone else handles everything else. In the real world, the first officer usually handles ATC and the captain does what he gets paid to do. If you are in an interview, make yourself familiar with what airports that airline serves. You don’t need to commit them to memory, but have a general idea, because in the ADM scenario you will likely be using them.

So, who needs your attention? Assuming that you are not given a major catastrophe like a fire or a flight control failure, you need to talk the flight attendant(s) first, if for no other reason to tell them that there has been a change in plans and that you will get back to them shortly. That phone call should take less than 15 seconds.

Next you need to talk to the dispatcher, who is jointly responsible for your airplane and flight. The dispatcher can give you up-to-the-minute weather at your possible alternates as well as any notices to airmen you may need. He or she can also save you a radio call by contacting the two stations involved and letting them know your change in plans (hint: If the person playing the role of the dispatcher doesn’t offer this service, ask for it). If the dispatcher can’t (or won’t) call the station to which you are diverting, then you need to call (this may be thrown at you in one of the timed sequences). Cover your bases as well by telling the dispatcher that you will call once on the ground to clean up any loose ends.
If maintenance needs to be consulted, do it via dispatch, since the dispatcher needs to know of any issues that may affect performance.

Next, you need to advise ATC what you are doing. If critical fuel is going to play a part in the scenario, it will usually be included in the briefing. If it is, you need to remember to declare either minimum fuel or an emergency as the case may be.

Once ATC is in the loop, somebody needs to brief the flight attendants and the passengers. If the diversion point is extremely close, say Miami to Fort Lauderdale, then you may want to ask the flight attendant to notify the passengers, and to tell them you will provide more information on the ground.

Once you have operated in the airlines, and especially as a captain, you realize that the scenarios are really the same thing you do every day. As someone new to the industry, you need to show that you have some idea of how the system works—and it’s very similar from one company to the next.

ADM is a critical part of any pilot’s aviating career, and for those looking to go to the airlines or advance up the ladder, it becomes a bigger and bigger part each step of the way. Start mastering it early, and remember, conservative is always better.—Chip Wright

The December “Since You Asked” poll: Looking for the traffic

When air traffic control notifies you that there’s traffic in your vicinity, what do you do first? That’s the question posed to digital subscribers in the December 2012 Flight Training’s “Since You Asked.”

A reader asked Rod Machado whether he is expected to look first and then reply to such a call, or immediately key the mic and indicate that he’s looking. Rod’s response:

When air traffic control calls out traffic for you, the first thing you should do is direct your attention in the direction of the traffic. So look for the traffic first. There’s no need to clog the airwaves by telling the controller that you’re “Looking,” either. The controller knows you’re looking, assuming you received the message.

I’ve automatically hit that mic key and said “Looking” while straining my eyeballs, so, ATC folks, I’ll back off on that one. Rod continues:

It typically takes only a few seconds to identify traffic if it’s close, at which point you’ll identify yourself to the controller and say either “Contact” if you see what was called, or if the traffic is converging on you and you don’t see it you can say “No contact.” If the traffic is close and you don’t see it, then request an avoidance vector. [Editor’s note: Since this column was published, a reader pointed out that the correct phrases are “negative contact” and “traffic in sight.”]

So, how did readers respond? Oddly, it was almost split right down the middle. Forty-nine percent of respondents said their first response is “Looking for traffic.” And 49 percent said they look for the traffic and then respond. Just one person said their first response is “Tally ho,” so congrats to the rest of you who didn’t pick that. To the one person who did pick it: You get a pass if you happen to be a fox hunter. Remember, if it’s not in the FAA’s Pilot-Controller Glossary, you probably shouldn’t use it.

January’s digital poll is on one of your favorite topics: landing. Don’t forget to cast your vote on p. 14!—Jill W. Tallman

“Since You Asked” polls appear monthly in the digital edition of Flight Training. If you’d like to switch your magazine from paper to digital at no additional charge, go here or call Member Services 800-USA-AOPA weekdays from 8:30 a.m. to 6 p.m. Eastern.

Holding

When I was working on my instrument rating, one of the first skills I learned was how to enter and fly a holding pattern. I sometimes had a devil of a time figuring out the proper entry—and at that time, there really was a requirement to get the proper entry and enter the hold properly—and sometimes I had bit of (or a lot of) trouble figuring out the best time or wind correction angle for the outbound leg. It didn’t take long to master, but I do remember thinking that I would so rarely hold that the whole thing was kind of a stupid exercise.

Little did I know.

Airline flying, especially in the Northeast, consists of more holds than one would imagine. Most of them are for weather—either weather moving through in the way of a summer thunderstorm, or as a result of weather totally muddying up the works earlier in the day. Snow plows created holding as well. Low vis will produce holds because airplanes are slow to clear the runway, and if the airport doesn’t have ground-based radar, everything takes twice as long.

Airport volume drives holding more than weather, though, and it is that kind of holding that is more unpredictable. Clear skies, low winds and…expect further clearance (EFC) times that are an hour or more away will drive you batty. They will also force a lot of diversions unless the dispatcher was able to load you up with a lot of extra fuel.

But some holds just crack you up or are “plane” unusual. More than once I had to hold (both on the ground and in flight) so that Air Force One (or One-and-a-Half [First or Second Lady] or Two) could take off or land. I once had to hold so that the Air Force Thunderbirds (or Blue Angels, I can’t remember which [and for the record, the Blue Angels are a far better show]) could finish their performance. On my last trip with Comair, I was trying to get into Harrisburg, Pennsylvania, and we held for 30 minutes because the airport had to clean up some dead birds.

Apparently, there were a lot of them, small ones, that had been hit by a previous arrival and departure. I’ve also held so that airplanes dealing with an emergency could land in front of me. Perfectly understandable.

Back in the day, flying a hold could be a bit of work, and when I was learning to do it, my instructor would occasionally make me do the entry and the hold on a single radio just to keep me on my toes. When I was flying the Brasilia, we had an autopilot, but we still had to fly the turns with the heading bug. The CRJ had a flight management system, and we had an entire module of training that focused on holds. The point of that was to get the crews proficient enough to get a hold built and executed in the shortest time possible.

Once the hold was “in the box” and the pictured verified on the multifunction displays, the flight plan could be executed and the aurplane would do its magic; it would even figure out the entry, which was ironic, because nowadays the entry doesn’t really matter so long as you get established quickly. If for whatever reason the crew doesn’t like the entry, it can be over-ridden by flying the entry in a heading mode, and then joining the hold. I did that once or twice just to stick it to the aviation deities. It’s the small battles…

The flip side to getting into a hold is talking your way out of one, or better yet, out of even starting one. When I was based in New York, I became quite adept at avoiding holds altogether. Thanks to high gas prices, tankering extra fuel was frowned upon if it wasn’t deemed absolutely essential.

Diversions create work and headaches for ATC, so I learned how to be perfectly honest about our situation and tell them we simply couldn’t hold. Most of the time, they could find a way to fit us in. Sometimes they couldn’t, and we did indeed divert.

Once that happened, my dispatcher would invariably want to talk. I always smiled, and told them they would have to stand by and hold…—Chip Wright

Older posts