Posts Tagged ‘training’

Learn like you are going to live forever

Friday, April 1st, 2016

Tell me and I forget.

Teach me and I remember.

Involve me and I learn.

—-Benjamin Franklin

maggie upside downIn mid-August of 2003 I attended an AOPA Air Safety Institute [ASI] pilot safety seminar in Portland entitled “Take Offs and Landings.” Little did I know that a few days later I would be putting both those skill sets in use when I had an engine failure at take off in Hood River, Oregon. My story was used in AOPA’s 2004 Nall Report and as well in AOPA’s seminar series called: ­­­­­­Real Pilot Stories. I credited my flight instructor, the ASI seminar, and my training for turning a potentially life threatening situation into an “off-airport” landing.

 

 

 

 

Recently I got the opportunity to talk with Mark Grady. Mark has presented safety seminars all over the country. A veteran with nearly 20 years of experience, Mark has seen it all. I hope that this interview is helpful for you, and will inspire you to attend one of the many AOPA or FAAST safety seminars offered.Mark&Allegro2-Crop1

How long have you been teaching Mark?

“I’ve been presenting aviation safety seminars for almost 20 years. I started doing seminars for the North Carolina Division of Aviation. I was then signed by the Aviation Speakers Bureau. Shortly thereafter, I became one of the AOPA Air Safety Institute presenters.”

Why do you feel called to teach aviation safety seminars?

“My father was a very safety-conscious man. I think I got a little of that from him. What really sealed the deal for me was during my ten years of being a traffic watch pilot and reporter in Raleigh. I did that from 1980 until 1987. Seeing the number of traffic accidents I covered, I thought often that drivers could learn a lot from pilot training and that pilots who may drive too aggressively have the potential to be unsafe aviators. It really is all about human factors. “

What do you do at your seminars to promote the active exchange of fears/ideas/education?

“The large amount of content in the AOPA Air Safety Institute seminars prevents too much time being taken by the attendees during the actual two-hour seminar, but we certainly promote the continuing education of all pilots. That doesn’t have to just take place during flight reviews. In fact, I think the more we try to stay safety conscious during all we do, including driving, the more likely we are to be better pilots. In addition to the online seminars, AOPA ASI has really great online courses for pilots who take information, training and safety seriously.”AOPA-SAC-12Jan2016

Who is your typical attendee?

“That’s a good question. While most of the attendees have appeared to be over 40, I have been encouraged over the number of younger pilots who have been coming recently. As far as the experience level of the attendees, it’s far reaching. We’ve had people attend who are just becoming interested in learning to fly right on through ATP pilots and even pilots who flew warbirds in World War II.”

 Do you ever hear any stories from attendees about how they have put the seminars to use in the sky?

“Absolutely! It’s rare I’ve given a seminar where a pilot does not come up at the end and tell me a first-hand account of how something he had heard at a seminar helped him in an emergency situation or kept him from getting into one.”

If you had a piece of advice for a lower time pilot in regard to education or safety, what would it be?

“It would be to strive to be a pilot of excellence. In fact, I’m writing a book titled “Pilot of Excellence” now. There is no such thing as a perfect pilot, but we can strive to be excellent. That requires a big commitment to remain aware during all phases of flight. Just one example is when we are going through a checklist. If we are not focusing on each checklist item and why we are doing that item on the checklist, we are simply giving ourselves a false sense of security that everything is ok. There is no reason to be bored on a flight. There is always something to do, especially playing the what-if game.”

Is there anything you would tell your younger, pilot-self that you wished you knew?

“To not look at a flight review as a test, but an opportunity. We ALL have weak areas. None of us knows it all. So, if we want a great flight review, I recommend spending at least 15 minutes the day before we meet with the instructor to be honest and write down our weak areas. Then ask the instructor to help us work on those. Now, that’s a good way to become an excellent pilot! By being honest with ourselves about our weaknesses. “

“I had one guy at a seminar ask me, “How do I decide what my weak areas are?” I told him to use the same thought process he probably had going for his private pilot checkride. I think most of us went to that ride praying the examiner would not get too deep into a subject area we thought we were a little weak on”.

“When you think about it, I find it amazing we can take to the sky, with family and friends on board, and fly all over the U.S. with only 40 hours of flight training. That’s why the examiner always says, “This is your license to learn” when he gives you that first temporary airman certificate. It may seem like a long time, but I recent experienced something that really put it in perspective. I was getting my hair cut when I noticed the young lady had a North Carolina Board of Cosmetology license in her cubicle. I asked her, “Does that take a lot of work to earn that?” Her response really shocked me. She said, “Oh, yes! Twelve hundred hours of training.” Wow.”

 

I suppose if it takes 1200 hours to be licensed to cut your hair, as pilots , we should strive to get as many hours of quality education as possible. Whether you opt for an online training course, a safety seminar, or calling up your local CFI and getting some dual, make sure you are learning like you are going to live forever. It might just be that learning that ensures you do so for many years to come.

Image - Version 2

AOPA Air Safety Institute Events: http://www.aopa.org/Pilot-Resources/Air-Safety-Institute/Events

AOPA Webinars: http://www.aopa.org/Pilot-Resources/AOPA-Webinars

EAA Webinars: http://www.eaa.org/en/eaa/aviation-education-and-resources/aviation-videos-and-aviation-photos/eaa-webinars

 

Manual Flying Skills: Keep ‘Em Sharp

Monday, February 29th, 2016

I’ve taught aerobatic and upset recovery courses to many aviators over the years, and almost without exception am told at the conclusion of training that it represented the best investment of time and money they’d ever spent on improving their skills and confidence as a pilot.

In recent years, the corporate, charter, and airline pilots have begun seeking out this kind of skill set as well. It’s a good thing, because as the Department of Transportation recently reported, some of today’s pilots may not have The Right Stuff.

Where the cockpit is concerned, modern light GA aircraft have a lot in common with the latest crop of business jets and airliners. Under normal circumstances these advanced cockpits add to safety. But when things go awry? Well, as our airplanes become more advanced, they also become more complicated, and that can lead to situations which are not covered by handbooks, manuals, and type-specific training.

We’ve all seen the result of unexpected system failures which were not handled properly by the crew. In recent years, Air France 447 suffered from pitot icing which overcame the tube’s heating element and caused air data errors. During the resulting confusion, the crew entered a stall at 38,000 feet which did not end until the Airbus impacted the ocean. Last December, Indonesia AirAsia Flight 8501’s crew responded to a malfunction of the aircraft’s rudder limiter by pulling a Flight Augmentation Computer circuit breaker, which had the unintended consequence of disabling the autopilot. The pilots stalled the aircraft and it ultimately crashed into the Java Sea.

Just to show you that this isn’t something that only happens to “other people,” let me give you two examples of my own. I was flying a Gulfstream IV one afternoon when a wide variety of seemingly unrelated components began to fail. Over the course of 45 minutes or so, we lost air data computers, autothrottles, both autopilots, mach trim compensation, yaw dampening, pitch trim, the flight guidance panel, one altitude encoder, cockpit displays, a display controller, symbol generator, TCAS, an inertial reference unit, and many other elements.

Some of these items dropped offline completely. Others froze or began to malfunction. Some were annunciated on the Crew Alerting System, others were not. Now I knew these components were not on the same bus, nor did they have much in common except that they were electrically powered. Yet the electrical system appeared to be operating normally. We were in visual conditions and not far from landing, which added to the pressure. There’s no checklist for this situation, nor was it ever discussed or simulated during training. Do we land? The aircraft’s braking system is electrical. Should we hold?

Without getting into too much detail, this flight ended uneventfully, but by the time we did touch down, I was basically flying the world’s largest Piper Cub: nothing but a stick, throttle, a couple of analog gauges, and a window to look outside. And that was all I needed. As I recall, the failure was traced to a series of malfunctioning relays under the cockpit floor. Our success was a result of focusing on the basic task of flying the airplane. It’s easy to say, but much harder to do when you’re busy and unsure of what’s really going on with your (normally) trusty aircraft. Failures of this kind cause a rapid loss of confidence in the overall airplane. You’re constantly wondering what will fail next.

The second example was related by a friend of mine. After departure, she lost the #1 comm radio. Not a big deal — the jet has two of them. A little while later, that radio also failed. Over the next few minutes, the flight data recorder failed, followed by the slats, flaps, an AHRS, and other associated componentry. The crew was in instrument weather and flew according to lost communication rules, finally making a high speed, no flap/no slat landing at their destination. Their troubles were caused by a cracked potable water tank, which flooded an electrical equipment bay under the rear floor of the aircraft. Gravity being what it is, one might wonder why important circuit boards are located underneath a water tank… but that’s an issue for another day.

So what does this have to do with upset recovery training? Plenty. The odds of coming out of these scenarios in one piece is directly related to the pilot’s ability to retain control of a malfunctioning aircraft, and that’s when the workload falls heavily on his or her manual flying skills. Truth be told, today’s highly automated airplanes don’t help prepare us for situations of this kind. They do the opposite, physically flying the airplane for us most of the time.

Dassault's Falcon 7X

Dassault’s Falcon 7X

You never know when sharp manual flying skills will pay off. In May of 2011, a Falcon 7X on approach into Kuala Lumpur experienced a rapid nose-up runaway trim condition which could not be stopped. The Falcon 7X was the first fly-by-wire business jet and had been in service for only four years, so this incident caught the attention of many people. It was serious enough that the entire 7X fleet was subsequently grounded. The final accident report was not issued until February of 2016, almost five years later, which should provide an indication of how complex the accident chain was on this event.

Oh, and the crew? They did it right, using a manual flying technique which, while it’s not taught in any type rating course I’m aware of, is taught by myself and others with an aerobatic background. In this case, the pilot learned it while flying Dassault’s other line of airplanes for the military:

While descending through 13000 feet, towards Kuala Lumpur, the elevator pitch trim began to move from neutral to the full nose-up position in 15 seconds time. This resulted in a sudden pitch up of the aircraft to 40° and the aircraft entering a climb. Initially both the captain (Pilot Monitoring) and the copilot (Pilot Flying) were both using the side stick in an attempt to regain control. The copilot then used the priority button to override the captain’s side stick inputs and asked him to stop. The copilot, a former military pilot with experience on Mirage IV and Mirage 2000 jets, then put the aircraft in a right hand bank to a maximum of 98 degrees.

Sudden, uncommanded full nose-up trim is about as bad as it gets when you’re talking about loss-of-control scenarios, yet the pilot was astute enough to remember that he could offset the unwanted lift by banking the jet. Have you been trained on this technique? The pilot had to deal with a beyond-knife-edge flight attitude, load factors as high as 4.6 G, and altitude which ballooned from 13,000 feet to 22,500 feet. What a ride that must have been!

I wasn’t able to locate an English version of the final BEA report, but the French original notes that “the Pilot Flying had performed this maneuver many times during his military career.” After 2 minutes and 35 seconds, the trim motor overheated and was finally cut off, allowing the crew to regain pitch control.

The investigation determined that a small soldering defect on one pin of a computer chip in the Horizontal Stabilizer Electronic Control Unit (HSECU) caused the nose-up instruction to be sent to the Tail Horizontal Stabilizer trim module. Think about the sheer volume of pins, solders, computer chips, and wiring in a modern airplane and you’ll start to realize that these aren’t far-fetched stories borne out of a science fiction novel.

As I said at the top, our aircraft are becoming more complex, and there’s no reason to expect that trend to change. This increases the likelihood of failures and scenarios for which we have not trained. If you’ll pardon the pun, when the chips are down, it’s usually the person behind the controls who determines whether the situation ends with a classic there-I-was hangar story or a fatal accident report.

Time and time again, we see that manual flying skills are as critical to safe flight as any powerplant or airfoil. Let’s keep ’em sharp.

Born in to the Golden Age of Aviation

Tuesday, January 26th, 2016

The Golden Age of aviation started when Lindbergh flew across the Atlantic 1927, and continued to 1939. According to Norm Baker, aviation was on everyone’s mind in the country, with air races, speed records, Lindbergh and Earhart. As child he built model airplanes and looked skyward. His was a family of modest means, yet his parents fully supported his dreams of becoming an aviator.

“As a child I always loved the look of airplanes, that is why I built model airplanes. The look of something detached from the Earth, all alone. I wanted to look at the Earth from the sky”

Norm was 8 years old when the DC-3 first flew in 1935. As a 12-year-old Boy Scout he dreamed of someday flying a DC3. In 1941 the Piper Aviation Company sponsored a national contest to build a J3 Cub model. 13-year-old Norm entered the contest and by mail received the contest rules and specs. Immediately he went down to hobby shop to buy balsa wood, glue etc. Maybe fortunately, Norm didn’t win first prize but won a lower prize: flight lessons. His supportive parents allowed him, at age 13, to get lessons.

Flushing Airport, Queens NY

Flushing Airport, Queens NY

In 1941 Piper Aviation paid for lessons for Norm at Speed’s Flying Service at Flushing Airport in Queens [which no longer exists]. Of course, he learned to fly in J3 Cub. A quick study he was eligible for solo with 8 hours of instruction, but Norm had to wait until his 17th birthday in 1945. Norm flew the same Cub all the way to pilots license at 40 hours, age 18 years. Had it not been for the prize money from Piper, he would not have been able to afford lessons.

Norm recounts how Speed Hanzlik may have saved he and his brother’s lives when he flew from Ithaca New York to Flushing airport during school break. “It must have been 1946 after I had my private pilot’s license and we flew down to Flushing where our parents were waiting to take us home for the holiday. Inexperienced pilot that I was I didn’t plan my flight well and arrived after dark in a Piper Cub with no lights and no radio. I managed to find the field and was enormously relieved to see the runway lighted by automobile headlights arranged to be there by Speed.”

Norm later attended Cornell University Ithaca, New York, studying engineering. He joined Cornell Pilot’s Club, 26 students owned one Piper Deluxe, side by side.

Norm was also enamored with the sea and joined the Naval Reserve. In 1951-53 when the Korean War broke out he was assigned to a destroyer- USS Samuel N. Moore DD747. As the ship’s Navigator, Norm had to be a celestial navigator for there was no radar more than 200 miles off shore and GPS hadn’t yet been invented. He used the sun, stars, moon, and planets as navigation aids in mid-ocean.

In 1982 Norm and his wife Mary Ann purchased a 95-foot schooner named the Anne Kristine. The 123-year-old-ship was the oldest continuously used sailing vessel in the world, launched from Norway in 1868. In May of 1991 the Anne Kristine set sail from New York for Tortola. However within thirty-six hours the lives of the crew were in grave danger due to the convergence of two storms Hurricane Grace and the nor’easter that the movie Perfect Storm was written about.   Though the ship was lost in the perfect storm, thanks to a dramatic midnight rescue by Coast Guard, there was no loss of life.

In 1992 Norm went back to his first love, aviation, and started flying again. He bought a 1966 Cessna 172, N4676L, which be lovingly named Anne Kristine II. Norm and wife Mary Ann flew a lot together. He attends EAA AirVenture at Oshkosh annually. A non-smoking marathoner, skier, horseback rider, hiker and swimmer, Norm’s bride, Mary Ann, unaccountably passed away in May 2003 from lung cancer.

Norman Baker with Anne Kristine II Photo Credit: Tracey Eller

Norm never forgot his childhood dream of flying the DC3. He contacted Dan Gryder who owns Elite Flight Services. “You meet people from all walks of life in aviation, and meeting Norm Baker was a true gift.  Norm called me as a cold call, and informed me that he would be taking my DC-3 class. In speaking with him several times, I suspected that Norm was probably retired, but I never asked his age or why he wanted to fly the DC-3″ Dan says.

DC3 Student

DC3 Student, Norm Baker

In December 2015, Norm flew to Griffin Georgia alone in his Cessna 172, fully IFR and holding a second class medical.  “He got out a tow bar and pushed the 172 around like a high school kid would.  Turns out Norm was 87 years old, almost 88 and out flying around America.” Gryder recalls.

Norm attributes his good health to staying active, and a special exercise routine that he complete each day, a ritual that consumed 45-minutes per day but kept him in top shape.

Norm flew the DC-3 and Dan was proud to issue him a new pilots license with the coveted DC-3 type rating on it, And then just for fun he opted for an hour left seat in a jet where he experienced touch and go landings, and a few climbs of over 5000 feet per minute…something he had never seen before. Gryder muses, “He boarded his 172 and flew off into the sunset, but I made a friend on this trip that really affected me in a profound way.  What a shining example for all the rest of us!”

Dan Gryder presents  Norm Baker with this type rating

Dan Gryder presents Norm Baker with his DC3 type rating

I asked Norm about inspiring the love of flight in kids. His answer surprised me a bit. I suppose that many times I think we just need to have big events, and get lots of kids in airplanes. Norm paused and thought about it. He said that he has to spend time with the child. “I have to know what the child looks at that thrills him. You have to talk about what the kid wants to hear, what lights them up. They might ask, “Can I do it?” We need to be able to say, “Yes you can!”

Norm Baker was lucky to be born into the Golden Age of Aviation. Perhaps the lesson I take away from meeting Norm is our ability in the aviation community to make our current age a golden age. Yes, we need to have events at our airports, and get loads of kids into our airplanes, but as well, we need to slow down and really talk with our youth. Find out what lights them up about aviation. That way we can all resoundingly say, “Yes you can!”

Man vs. Machine: The Challenge of Staying Sharp in the 21st Century

Wednesday, June 10th, 2015

So there I was, sitting in the cockpit of a 2015 Super Decathlon the other day, twisting my sunburned noggin into a pretzel trying to decide whether the ship was a throwback to the 1940s or a glimpse of general aviation’s high-tech future. You’d think that would be an easy call. The Decathlon is a derivative of the Aeronca Champ, after all.

But tube-and-fabric airframe aside, the Garmin GTN750 touchscreen, Aspen Evolution 1000, ADS-B data link, and other gadgetry made me realize that the greatest advances in avionics and aircraft automation are not found in airliners. They’re found in general aviation aircraft, many of them with the same reciprocating engines (and, on occasion, steel tube fuselages) they had seventy years ago.

We now live in a world where you can ask your iPhone to whip up a flight plan and wirelessly transmit it to the avionics in your airplane so you don’t have to input a thing. For the IFR pilot, did ATC give you a re-route? No problem — and no buttons to press (except perhaps the Staples “easy” button). Just touch the screen of your Garmin navigator and drag the course line to wherever you want it to go. Flying: “so easy a caveman can do it”.

Or is it?

I’m not anti-technology. Far from it. I’m a computer nerd and can’t get enough of the stuff. Nor am I suggesting that a high-tech cockpit even makes life easier. Especially when equipment fails or doesn’t respond as expected, the work load can ratchet up very quickly. But the truth is that once you’ve got the boxes figured out, automation can and does rob us of basic flying skill unless we take a proactive stance to prevent the erosion of those skills.

How could it not? Automated aircraft make us flight managers, not pilots who physically control the aircraft. There’s nothing wrong with that, but it’s something pilots far and wide need to acknowledge and be aware of.

The insidiously perishable nature of flying skill is ironic, because as most manufacturers will tell you, from a statistical viewpoint aviation is considerably safer due to the march of technology. What remains unsaid, however, is that much like beefing up a weak point on an aerobatic aircraft, we’re just shifting the hazard to another area. The wing might be able to withstand 16 Gs, but that doesn’t mean the engine mount can. If you strengthen the engine mount, then the empennage or longerons become the weakest link. Each component has its own failure point and mode.
Likewise for automation. Sure, it relieves fatigue from hand flying. It brings amazing weather, terrain, and traffic information into the cockpit. Situational awareness is a snap. Fuel burn can now be accurately estimated to within a few pounds on a multi-hour flight.

But it also means we’re more disconnected from the airplane since we aren’t physically flying it. Up and down drafts are masked because the autopilot handles them for us — until it trims all the way to the critical angle of attack. I’ve seen that happen multiple times without the pilot even being aware of it. Our hand flying skills and instrument scan decay due to lack of use.

This sort of thing is especially unnerving to me because I’m aware of it and yet have also fallen victim to it myself on occasion.

I think of automation the same way I think of air traffic control. It’s a safety asset, but one I must constantly monitor because it has failed before and it will fail again some day. I’ve been vectored into traffic, sent across a localizer toward a mountain (ie. forgotten about), and given instructions meant for another aircraft. I’ve even had a controller attempt to cancel my active IFR flight plan in mid-flight without my assent.

Automation is no different. The challenge is to keep our skills sharp and expect the unexpected. If hand-flying skill was well established in the beginning of a pilot’s flying career, that’s not an insurmountable challenge. The modern aviator, though, sees this automation from a very early point, and for some of them, the basic flying skills are not well established. The automation serves to mask the inadequacies. As long as everything keeps running properly, no harm/no foul.

When it doesn’t? Well, that’s where the rock meets the not-so-proverbial hard place, as we’re starting to discover.

It occurs to me that flying “raw data” after a long period away from hand-flying can be as challenging as the transition to a new airplane. I see many similarities in initial pilot performance, especially if the aviator has been confined to a single aircraft type for a long period.

In that regard, I believe one of the best ways to keep yourself sharp is to fly varying types of aircraft. If, for example, you fly an aerobatic plane or a glider in addition to that shiny jet, odds are you’ll enhance and retain skills you probably aren’t even aware of. Perhaps that aptitude is simply the mental agility to move from one cockpit to another. Maybe it’s an improved competence with pitch/power relationships or comfort with unusual attitudes.

However poorly I may have explained it, I’ve simply noticed that those who fly multiple types of aircraft seem to be able to adapt to changes faster than those who don’t. I doubt this has as much to do with physical ability as it does mental acuity.

The rudimentary flight skills must be developed in primary training because there is little room made for them during advanced ratings, and automation can easily mask the lack of those abilities until they are the only thing standing between a pilot and a Very Bad Day. As such, the case is made for conducting primary flight training in a non-automated aircraft, or at the very least, with the automation fully disabled.

At the risk of sounding like a broken record, I’d take it one step further and suggest that every pilot should learn to fly in the most stone-simple tailwheel airplane available. They’re economical. They put the focus on primary flight skills most likely to atrophy later. They simply will not abide poor airmanship. And most of all, they’re fun to fly. Isn’t that why we got into aviation in the first place?

Unfortunately, the trend is headed in the opposite direction — even Cubs come with glass panels these days! But as far as I know, they’re still making them with an “off” switch, so the hope for a better training experience will continue to spring eternal.

Advancing an Aviation Education … The Hard Way

Monday, May 25th, 2015
Cessna 150

Cessna 150

Last month I pointed the finger at a couple of unique instructors, both of whom were key to my life of flying airplanes. A few e-mails rightly took me to task wondering about my own role in years of education experience, so this month, I decided to share an early experience from not long after I earned my private certificate. It proves, yet again, that many of us live to be old pilots certainly because of our experience, but sometimes too thanks to plain dumb luck.

I was returning home on a warm July afternoon in a Cessna 150 with maybe 125 hours penned in my logbook. Sky Harbor airport, my base back then in Chicago’s north suburbs, is long gone, but was remembered as a single north-south, hard-surfaced runway about 3,000 feet long. The approach from the north was clear, except for the Walgreen’s HQ a mile or so away, but there were trees near the approach from the south, something the local town refused to trim because they were considered a necessary element to the graveyard they shaded near the runway 36 numbers.

My FAA examiner told me a few months earlier my private was a lesson to learn, but sometimes we simply don’t know what we don’t know.

On final approach that afternoon I saw another aircraft on the runway and knew I needed to keep an eye on him in case he didn’t clear. But of course they always did so I added flaps 40 and of course a bunch of power to make up for all the drag. For those of you who fly the 152 these days, you have no feeling for just how much drag “flaps 40” on a Cessna 150 added to an approach. Let’s just say it’s a bunch and was one reason the later 152s were limited to flaps 30. In the July humidity I could feel there wasn’t much elevator room to play with as the nose pitched up and down, but it was flying.

Then the other airplane stopped dead on the runway and I knew a go-around was needed, one that meant full power and a climb to the side of the runway to keep the airplane on the runway in site.

With all that drag and full power, the 150 kept trying to pitch up and I kept pushing back to avoid a stall. So there I was pushing the nose down for safety and not climbing and now scared to death to let the nose pitch up because it might stall. I did the next best thing … I just kept flying straight ahead creeping up a few feet at a time watching the hangars pass below with people obviously staring up wondering what I was doing.

Readers are probably wondering why I didn’t raise some of the flaps to dump some of that drag. Great question. I guess I didn’t remember much from training about go-arounds or a good way to milk the flaps up while close to the ground right then. I’m sure I must have seen a go-around at least once or twice in flight training but right then and there I kept thinking I was about to fall out of the sky.

At this point, I’m maybe half a mile north of the airport still no more than about 200 feet agl. when it came to me … the flaps were still down. So if the flaps hanging down was the problem, getting rid of them was the solution I thought. I remembered about then not to bring them all up at once, but honestly I was pretty scared watching the roof of he Walgreens HQ coming up beneath me and the Interstate just beyond.

Cessna 150 flap switch

Courtesy, [email protected]

I hit the flap switch to bled off the drag and instantly felt the old burgundy colored airplane leap ahead … that is, just before it started to fall. The early Cessna 150s had a flap switch that had gotten more than their fair share of novice pilots into trouble because it used three positions … down, neutral and up. In order to milk the flaps up, I should have brought the switch to up long enough to return to flaps 30 before returning the switch to neutral.

Of course, that’s not what I did. In my haste to climb, I just flicked the switch and in about 15 seconds went from flaps 40 to 0. The part about flaps adding lift seemed to have completely escaped me too I guess.

I only avoided parking the 150 in the Walgreens’ employee lot that afternoon by yanking back on the control wheel more out of fear than anything else. With all the drag gone and me being the only passenger, the little airplane climbed just fine back to pattern altitude and around the patch for a safe landing a few minutes later.

Forgetting that flap switch was one mistake I never made again. I also made sure I reminded students about it when I became a teacher myself years later. And yes, we practiced plenty of go-arounds before I even sent them out solo.

Flying Backward

Wednesday, February 11th, 2015

“Aviation in itself is not inherently dangerous. But to an even greater degree than the sea, it is terribly unforgiving of any carelessness, incapacity or neglect.”

Aviation insurance pioneer A. G. Lamplugh uttered that oft-quoted phrase more than eighty years ago, and it’s as valid today as it was back then. Like Newton’s Laws of Physics, it’s one of the basic, unchanging truths about flying: certain things simply must be done properly if we’re to avoid disaster in the air. One of the best examples would be dealing with a low-altitude engine failure.

Last week’s TransAsia ATR-72 accident is a potent reminder of this aphorism. While we don’t know the cause yet and probably won’t know the whole story for a year or more, it got me thinking about how oddly things are done in aviation sometimes. For example, airline pilots move “up” the food chain from turboprops to jets. If safety is the paramount concern, that’s backwards. Shouldn’t the most experienced pilots should be exercising their skills on the most challenging aircraft rather than the least?

While jets certainly have their pitfalls and perils, a low-altitude engine failure is generally more challenging in a turboprop. The dead engine’s propeller creates tremendous drag until it’s properly secured. Many multi-engine turboprops are equipped with mechanisms to automatically feather the offending prop, but if that system doesn’t function properly, has been deferred, or simply doesn’t exist, the pilot is faced with six levers in close proximity, only one of which will do the trick. It’s easy to pull the wrong one.

Worse yet, if the craft has an autofeather system, the pilot would logically expect it to function as advertised. He or she would have to first detect the lack of feathering, then run the identify-verify-feather drill. Unlike training scenarios, there’s a major surprise factor at play as well. In a simulator, is anyone really surprised when the engine quits? Of course not. In the real world, pilots make thousands of flights where a powerplant doesn’t fail. As much as you tell yourself with each takeoff that “this could be the one”, empirical evidence in the form of a pilot’s own experience suggests against it. That makes preparation for a low-altitude emergency a constant battle with oneself. Are we always honest about how we’re doing in that fight? Probably not.

When I flew ex-military U-21A turboprops for a government contractor, we did all our training in the actual aircraft. I’ll never forget how marginal the aircraft’s performance was, even when engine failures were handled properly and expediently. We would fly a single-engine approach into Catalina Airport, where the missed approach procedure takes you toward the center of the island and some fairly high terrain. On one training flight the autofeather system initially worked as advertised, but then started to slowly unfeather.

Turboprop flying also comes with increased risk exposure due to the flight profile. A jet pilot might fly one or two legs a day versus five, six, or seven flown by the guy in the turboprop. With more legs comes an increased statistical opportunity for that engine to quit on takeoff. Turboprops also fly at lower altitudes where they tend to be in weather rather than above it.

The reciprocating twin pilot has it even worse when it comes to performance. Most of them have no guarantee of any climb performance at all on one engine, especially with the gear down, and few are equipped with automatic feathering systems. Yet that’s where we all start out.

Contrast this with engine failure in the modern jet, where the pilot need do nothing but raise the landing gear and keep the nose straight. In my aircraft, at least, we don’t even add power on the remaining engine. Unless the plane is literally on fire, we just climb straight out for a minute or two, gaining altitude and doing… nothing. No checklist to run, and only two levers in the throttle quadrant rather than six.

John Deakin described the contrast between prop and jet quite colorfully when he transitioned into the G-IV:

“If you hear a Gulfstream pilot whine about poor performance when high, hot, and heavy, please understand, he’s whining about less than 1,000 feet per minute on one engine. I sometimes feel like slapping a chokehold on, and dragging one of these guys out to the old C-46, loaded, on a hot day, and make him do an engine failure on takeoff, where he’d be lucky to get 50 feet per minute.”

There are other places where you can see this same phenomenon at work in aviation. Consider the world of flight instruction. The least experienced CFIs typically start off by teaching primary students. Again, that’s backwards. It would seem more logical to start instructors off with checkouts and endorsements for experienced pilots or commercial certificate training. Putting the best, most experienced CFIs with the neophytes might help accelerate their progress and alleviate the high student pilot drop-out rate.

The Law of Primacy — something every CFI candidate learns about — tells us that “the state of being first, often creates a strong, almost unshakable, impression. Things learned first create a strong impression in the mind that is difficult to erase. For the instructor, this means that what is taught must be right the first time.” Primary flight training literally sets the foundation of an aviator’s flying life, to say nothing of the fact that teaching primary students is one of the most difficult jobs a CFI can undertake. So why is this critical task mainly entrusted to the newest, least experienced instructors?

The answer to these questions usually comes down to money. The almighty dollar frequently plays a powerful role in explaining the unexplainable in aviation. While it would be unrealistic to deny the importance of financial concerns in defying gravity, whole sections of the aviation ecosystem run backwards and one can’t help but wonder if perhaps safety suffers because of it.

Upset Recovery Training vs. Aerobatics

Tuesday, October 28th, 2014

Upset recovery training has been all the rage over the past couple of years. A Google search of that exact phrase returns more than 24,000 results. There’s a professional association dedicated to such training. ICAO even declared aircraft upsets to be the cause of “more fatalities in scheduled commercial operations than any other category of accidents over the last ten years.”

Nevertheless, I get the impression that some folks wonder if it isn’t more of a safety fad than an intrinsic imperative. It’s hard to blame them. You can hardly open a magazine or aviation newsletter these days without seeing slick advertisements for this stuff. When I was at recurrent training a couple of months ago, CAE was offering upset recovery training to corporate jet pilots there in Dallas. “If I wanted to fly aerobatics, I’d fly aerobatics!” one aviator groused.

He didn’t ask my opinion, but if he had, I’d remind him that 99% of pilots spend 99% of their time in straight and level flight — especially when the aircraft in question is a business jet. I’m not exaggerating much when I say that even your typical Skyhawk pilot is a virtual aerobat compared to the kind of flying we do on charter and corporate trips. For one thing, passengers pay the bills and they want the smoothest, most uneventful flight possible.

In addition, these jets fly at very high altitudes – typically in the mid-40s and even as high as 51,000 feet. Bank and pitch attitudes tend to stay within a narrow band. Yaw? There shouldn’t be any. The ball stays centered, period. We aim for a level of smoothness that exceeds even that of the airlines. Passengers and catering may move about the cabin frequently during a flight, but it shouldn’t be because of anything we’re doing up front.

Fly like that for a decade or two, logging thousands and thousands of uneventful, straight-and-level hours and the thought of all-attitude flying can become – to put it mildly – uncomfortable. I’ve even seen former fighter pilots become squeamish at the thought of high bank or pitch angles after twenty years of bizjet flying.

Unfortunately, there are a wide variety of things that can land a pilot in a thoroughly dangerous attitude: wind shear, wake turbulence, autopilot failure, mechanical malfunction (hydraulic hard-overs, asymmetric spoiler or flap deployment, etc.), inattention, and last but not least, plain old pilot error. Look at recent high-profile accidents and you’ll see some surprisingly basic flying blunders from the crew. Air France 447, Colgan 3407, and Asiana 214 are just three such examples. It may not happen often, but when it does it can bite hard.

So yes, I think there is a strong need for more manual flying exposure in general, and upset recovery training in particular. This isn’t specific to jet aircraft, because some light aircraft have surpassed their turbine-powered cousins in the avionics department. I only wish the 1980’s era FMS computer in my Gulfstream was as speedy as a modern G1000 installation.

Defining the Problem

To the best of my knowledge, neither the NTSB or FAA provide a standard definition for “upset”, but much like Supreme Court Justice Potter Stewart, we pretty much know it when we see it. The term has generally come to be defined as a flight path or aircraft attitude deviating significantly from that which was intended by the pilot. Upsets have led to loss of control, aircraft damage or destruction, and more than a few fatalities.

As automation proliferates, pilots receive less hands-on experience and a gradual but significant reduction in stick-and-rudder skill begins to occur. The change is a subtle one, and that’s part of what makes it so hazardous. A recent report by the FAA PARC rulemaking workgroup cites poor stick and rudder skills as the number two risk factor facing pilots today. The simple fact is that windshear, wake turbulence, and automation failures happen.

The purpose of upset recovery training is to give pilots the tools and experience necessary to recognize and prevent impending loss of control situations. As the saying goes, an ounce of prevention is worth a pound of cure, and that’s why teaching recovery strategies from the most common upset scenarios is actually a secondary (though important) goal.

What about simulators? They’ve proven to be an excellent tool in pilot training, but even the most high fidelity Level D sims fall short when it comes to deep stalls and loss of control scenarios. For one thing, stall recovery is typically initiated at the first indication of stall, so the techniques taught in the simulator may not apply to a full aerodynamic stall. Due to the incredibly complex and unpredictable nature of post-stall aerodynamics, simulators aren’t usually programmed to accurately emulate an aircraft in a deeply stalled condition. Thus the need for in-aircraft experience to supplement simulator training.

Upset Recovery vs. Aerobatics

It’s important to note that upset recovery training may involve aerobatic maneuvering, but it does not exist to teach aerobatics. Periodically over the years, discussions on the merits of this training will cause a co-worker to broach the subject of flying an aerobatic maneuver in an airplane which is not designed and built for that purpose. This happened just the other day. Typically they’ll ask me if, as an aerobatic pilot, I would ever consider performing a barrel or aileron roll in the aircraft.

I used to just give them the short answer: “no”. But over time I’ve started explaining why I think it’s such a bad idea, even for those of us who are trained to fly such maneuvers. I won’t touch on the regulations, because I think we are all familiar with those. I’m just talking about practical considerations.

Normal planes tend to have non-symmetrical airfoils which were not designed to fly aerobatics. They feature slower roll rates, lower structural integrity under high G loads, and considerably less control authority. You might have noticed that the control surfaces on aerobatic airplanes are pretty large — they are designed that way because they’re needed to get safely into and out of aerobatic maneuvers.

That’s not to say an airplane with small control surfaces like a business jet or light GA single cannot perform aerobatics without disaster striking. Clay Lacy flies an airshow sequence in his Learjet. Duane Cole flew a Bonanza. Bob Hoover used a Shrike Commander. Sean Tucker flew an acro sequence in a Columbia (now known as the Cessna TTx). However, the margins are lower, the aerobatics are far more difficult, and pilots not experienced and prepared enough for those things are much more likely to end up hurt or dead.

Sean Tucker will tell you that the Columbia may not recover from spins of more than one or two turns. Duane Cole said the Bonanza (in which he did inverted ribbon cuts) had barely enough elevator authority for the maneuver, and it required incredible strength to hold the nose up far enough for inverted level flight. Bob Hoover tailored his performance to maneuvers the Shrike could do — he’ll tell you he avoided some aerobatic maneuvers because of the airplane’s limitations.

Knowing those limitations and how to deal with them — that’s where being an experienced professional aerobatic pilot makes the difference. And I’m sure none of those guys took flying those GA airplanes upside down lightly. A lot of planning, consideration, training and practice went into their performances.

Now, consider the aircraft condition. Any negative Gs and stuff will be flying around the cabin. Dirt from the carpet. Manuals. Items from the cargo area. Floor mats. Passengers. EFBs. Drinks. Anything in the armrest or sidewall pockets. That could be a little distracting. Items could get lodged behind the rudder pedals, hit you in the head, or worse.

If the belts aren’t tight enough, your posterior will quickly separate from the seat it’s normally attached to. And I assure you, your belts are not tight enough. Getting them that way involves cinching the lap belt down until it literally hurts. How many people fly a standard or transport category aircraft that way?

Now consider that the engine is not set up for fuel and oil flow under negative Gs. Even in airplanes specifically designed for acro, the G loads move the entire engine on the engine mount. In the Decathlon you can always see the spinner move up an inch or two when pushing a few negative Gs. Who knows what that would do with the tighter clearances between the fan and engine cowl on an airplane like the Gulfstream?

Next, let’s consider trim. The jet flies around with an electric trim system which doesn’t move all that quickly. The aircraft are typically trimmed for upright flight. That trim setting works heavily against you when inverted, and might easily reach the point where even full control deflection wouldn’t be sufficient.

I could go on, but suffice it to say that the more I learn about aerobatics, the less I would want to do them in a non-aerobatic aircraft – and certainly not a swept wing jet! Sure, if performed perfectly, you might be just fine. But any unusual attitude is going to be far more difficult — if not outright impossible — to recover from.

Dang it, Tex!

Every time someone references Tex Johnson’s famous barrel roll in the Boeing 707 prototype, I can’t help but wish he hadn’t done that. Yes, it helped sell an airplane the company had staked it’s entire future on, but aerobatic instructors have been paying the price ever since.

Aerobatic and upset recovery training: good. Experimenting with normal category airplanes: bad. Very bad.

The Ab Initio Flaw

Wednesday, August 6th, 2014

Ecclesiastes tells us there’s nothing new under the sun. Where the pilot shortage debate is concerned, that’s definitely true. More than one industry veteran has wryly noted the “impending pilot shortages” of every decade since the Second World War. And considering the number of pilots trained during that conflict, you could say the shortage history goes back a lot further. How about to the very dawn of powered flight? I mean, Wilbur and Orville could have saved themselves tremendous time and money if only they’d had an experienced instructor to guide them!

Every “pilot shortage” article, blog post, and discussion I’ve seen centers around short-term hiring trends and possible improvements in salary and benefits for aviators. Nobody asked my opinion, but for what it’s worth, it seems both clear and logical that the regional airlines are hurting for pilots. The pay and working conditions at those companies are horrific. Major airlines, on the other hand, will probably never have trouble attracting people. I don’t know if that qualifies as a pilot shortage. I tend to think it does not. It’s more of a shortage of people who are willing to participate like lab rats in a Part 121 industry cost-cutting experiment.

What the pilot shortage mishegas really has me thinking about is the long-term possibility of ab initio schemes migrating to the United States and what a profoundly bad thing that would be for aviation at every level.

Who knew that JAL operates a huge fleet of Bonanzas?  For decades they operated an ab initio program out of Napa, California

Who knew that JAL operates a huge fleet of Bonanzas? For decades they operated an ab initio program out of Napa, California

According to Wikipedia, “ab initio is a Latin term meaning ‘from the beginning’ and is derived from the Latin ab (‘from’) + initio, ablative singular of initium (‘beginning’)”. In aviation, it refers to a method of training pilots. In fact, it’s the de facto technique in use for the majority of airlines around the world. Essentially, foreign airlines will hire people off the street who have no flight time or experience. They are shepherded through the various ratings and certificates necessary to fly an Boeing or Airbus while on the airline’s payroll.

This might sound like a brilliant idea — and to an airline, it probably is. Imagine, no bad habits or “we did it this way at my last job” issues, just well-trained worker bees who have been indoctrinated from day one as multi-pilot airline crew members.

I don’t know if the airlines love ab initio or not. What I do know is that non-U.S. airlines use it because there’s no other choice. The fertile, Mesopotamian breeding ground of flying experience we call general aviation simply does not exist in those countries. Without GA’s infrastructure, there are no light aircraft, flight schools, mechanics, or small airports where aspiring pilots can learn to fly. Those who do manage to get such experience more often than not get it here in the United States.

To put it another way, the “pilot shortage” has been going on in foreign countries since the dawn of aviation, and ab initio is the way they’ve solved the problem in most places.

So what’s my beef with this method of training? To put it simply, in an era of atrophying pilot skills, ab initio is going to make a bad problem worse. While it’s a proven way of ensuring a steady supply of labor, ab initio also produces a relatively narrow pilot who is trained from day one to do a single thing: fly an airliner. These airline programs don’t expose trainees to high Gs, aerobatics, gliders, sea planes, banner towing, tailwheels, instructing, or any of the other stuff that helps create a well-rounded aviator.

If airlines in the U.S. adopt the ab initio system, the pilots they hire will only experience things that are a) legally required, and b) directly applicable to flying a modern, automated airliner. Nothing else. After all, an airline will only invest what’s necessary to do the job. It’s a business decision. And in an era of cutthroat competition and razor thin profit margins, who could blame them?

The problem is, all those crap jobs young fliers complain about (and veterans seem to look back on with a degree of fondness) are vital seasoning for a pilot. He or she is learning to make command decisions, interact with employers and customers, and generally figure out the art of flying. It’s developing that spidey sense, taking a few hard knocks in the industry, and learning to distinguish between safe and legal.

These years don’t pay well where one’s bank account is concerned, but they are create a different type of wealth, one that’s often invisible and can prove vital when equipment stops working, weather is worse than forecast, or the holes in your Swiss cheese model start to line up.

Thus far, airline ab initio programs haven’t been a major part of the landscape here in the U.S. because our aviation sector is fairly robust. We are blessed with flying jobs which build the experience, skill, and time necessary for larger, more complex aircraft. But it’s easy to see why it might become an attractive option for airlines. For one thing, that darn pilot shortage. The cost of flying has risen dramatically over the past decade while the benefits (read: money) remain too low for too long. Airlines can cure the shortage by training pilots from zero hours… but at what cost?

Coming up through the ranks used to mean you were almost certain to be exposed to some of those elements. That’s why I believe ab initio would be just one more nail in the coffin of U.S. aviation, one more brick in the road of turning us into Europe. While I like visiting The Continent, I do not envy the size or scope of their aviation sector and sincerely hope we don’t go down that path.

Addendum

Apparently I’m not the only one with ab initio on my mind. The day before the deadline for this post, AVweb reported on a major announcement from Boeing:

Now, with its subsidiary company Jeppesen, [Boeing] will undertake ab initio airline pilot training to provide a supply of pilots with an “Airline Transport Pilot License” (certificate in the U.S.) and a Boeing type rating who “will be ready to move into the first officer’s seat,” according to Sherry Carbary, vice president of flight services.

Boeing’s ab initio training program is divided into two parts. The first, run by Jeppesen, will take an applicant—referred to as a cadet—who must hold a first-class medical at the time of application, and put her or him through a screening process. Those who pass will go through 12-18 months of flight training, resulting in, according to David Wright, director of general aviation training, an Airline Transport Pilot License. The second phase involves the cadet going to a Boeing facility for another two months of training where she or he gets a first exposure to a full-motion jet simulator, and that will result in a type rating in a Boeing jet. Wright said that cadets will come out of the $100,000-$150,000 program with 200-250 hours of flying time and will be ready to go into the right seat of an airliner.

Boeing jets are operated by major airlines, not regionals. An American pilot would typically sport several thousand of hours of flight experience before being hired there. Now Boeing is proposing to put 200 hour pilots into their airplanes on a worldwide basis. That won’t fly (yet) in the U.S., where 1,500 hours is currently required for an Airline Transport Pilot certificate. But I believe the ab inito trend bodes ill for airlines and general aviation alike.

We Don’t Train For That

Monday, July 7th, 2014

The tragic Gulfstream IV accident in Boston has been on my mind lately, partly because I fly that aircraft, but also because the facts of the case are disquieting.

While I’m not interested in speculating about the cause, I don’t mind discussing factual information that the NTSB has already released to the public. And one of the initial details they provided was that the airplane reached takeoff speed but the pilot flying was not able to raise the nose (or “rotate,” in jet parlance).

My first thought after hearing this? “We don’t train for that.” Every scenario covered during initial and recurrent training—whether in the simulator or the classroom—is based on one of two sequences: a malfunction prior to V1, in which case we stop, or a malfunction after V1, in which case we continue the takeoff and deal with the problem in the air. As far as I know, every multi-engine jet is operated the same way.

But nowhere is there any discussion or training on what to do if you reach the takeoff decision speed (V1), elect to continue, reach Vr, and are then unable to make the airplane fly. You’re forced into doing something that years of training has taught you to never do: blow past V1, Vr, V2, and then attempt an abort.

In this case, the airplane reached 165 knots—about 45 knots beyond the takeoff/abort decision speed. To call that uncharted territory would be generous. Meanwhile, thirty tons of metal and fuel is hurtling down the runway at nearly a football field per second.

We just don’t train for it. But maybe we should. Perhaps instead of focusing on simple engine failures we ought to look at the things that are causing accidents and add them to a database of training scenarios which can be enacted in the simulator without prior notice. Of course, this would have to be a no-jeopardy situation for the pilots. This wouldn’t be a test, it would be a learning experience based on real-world situations encountered by pilots flying actual airplanes. In some cases there’s no good solution, but even then I believe there are valuable things to be learned.

In the case of the Gulfstream IV, there have been four fatal accidents since the aircraft went into service more than a quarter of a century ago. As many news publications have noted, that’s not a bad record. But all four have something in common: each occurred on the ground.

  • October 30, 1996: a Gulfstream IV crashed during takeoff after the pilots lose control during a gusting crosswind.
  • February 12, 2012: a Gulfstream IV overran the 2,000 meter long runway at Bukavu-Kamenbe
  • July 13, 2012: a G-IV on a repositioning flight in southern France departs the runway during landing and broke apart after hitting a stand of trees.
  • May 31, 2014: the Gulfstream accident in Boston

In the few years that I’ve been flying this outstanding aircraft, I’ve seen a variety of odd things happen, from preflight brake system anomalies to flaps that wouldn’t deploy when the airplane was cold-soaked to a “main entry door” annunciation at 45,000 feet (believe me, that gets your attention!).

This isn’t to say the G-IV is an unsafe airplane. Far from it. But like most aircraft, it’s a highly complex piece of machinery with tens of thousands of individual parts. All sorts of tribal knowledge comes from instructors and line pilots during recurrent training. With each anomaly related to us in class, I always end up thinking to myself “we should run that scenario in the simulator.”

Cases like United 232, Apollo 13, Air France 447, and US Air 1549 prove time and time again that not every failure is covered by training or checklists. Corporate/charter aviation is already pretty safe… but perhaps we can do even better.

The Dark Side of Maintenance

Tuesday, June 10th, 2014

The Dark SideHave you ever put your airplane in the shop—perhaps for an annual inspection, a squawk, or a routine oil change—only to find when you fly it for the first time after maintenance that something that was working fine no longer does?  Every aircraft owner has had this happen. I sure have.

Maintenance has a dark side that isn’t usually discussed in polite company: It sometimes breaks aircraft instead of fixing them.

When something in an aircraft fails because of something a mechanic did—or failed to do—we refer to it as a “maintenance-induced failure”…or “MIF” for short. Such MIFs occur a lot more often than anyone cares to admit.

Why do high-time engines fail?

I started thinking seriously about MIFs in 2007 while corresponding with Nathan Ulrich Ph.D. about his ground-breaking research into the causes of catastrophic piston aircraft engine failures (based on five years’ worth of NTSB accident data) that I discussed in an earlier post. Dr. Ulrich’s analysis showed conclusively that by far the highest risk of catastrophic engine failure occurs when the engine is young—during the first two years and 200 hours after it is built, rebuilt or overhauled—due to “infant-mortality failures.”

But the NTSB data was of little statistical value in analyzing the failure risk of high-time engines beyond TBO, simply because so few engines are operated past TBO; most are arbitrarily euthanized at TBO. We don’t have good data on how many engines are flying past TBO, but it’s a relatively small number. So it’s s no surprise that the NTSB database contains very few accidents attributed to failures of over-TBO engines. Because there are so few, Ulrich and I decided to study all such NTSB reports for 2001 through 2005 to see if we could detect some pattern of what made these high-time engines fail. Sure enough, we did detect a pattern.

About half the reported failures of past-TBO engines stated that the reason for the engine failure could not be determined by investigators. Of the half where the cause could be determined, we found that about 80% were MIFs. In other words, those engines failed not because they were past TBO, but because mechanics worked on the engines and screwed something up!

Sheared Camshaft Bevel GearCase in point: I received a call from an aircraft owner whose Bonanza was undergoing annual inspection. The shop convinced the owner to have his propeller and prop governor sent out for 6-year overhauls. (Had the owner asked my advice, I’d have urged him not to do this, but that’s another story for another blog post.)

The overhauled prop and governor came back from the prop shop and were reinstalled. The mechanic had trouble getting the prop to cycle properly, and he wound up removing and reinstalling the governor three times. During the third engine runup, the the prop still wouldn’t cycle properly. The mechanic decided to take the airplane up on a test flight anyway (!) which resulted in an engine overspeed. The mechanic then removed the prop governor yet again and discovered that the governor drive wasn’t turning when the crankshaft was rotated.

I told the owner that I’d seen this before, and the cause was always the same: improper installation of the prop governor. If the splined drive and gears aren’t meshed properly before the governor is torqued, the camshaft gear is damaged, and the only fix is a teardown. (A couple of engine shops and a Continental tech rep all told the owner the same thing.)

This could turn out to be a $20,000 MIF. Ouch!

How often do MIFs happen?

They happen a lot. Hardly a day goes by that I don’t receive an email or a phone call from an exasperated owner complaining about some aircraft problem that is obviously a MIF.

A Cessna 182 owner emailed me that several months earlier, he’d put the plane in the shop for an oil change and installation of an STC’d exhaust fairing. A couple of months later, he decided to have a digital engine monitor installed. The new engine monitor revealed that the right bank of cylinders (#1, #3 and #5) all had very high CHTs well above 400°F. This had not shown up on the factory CHT gauge because its probe was installed on cylinder #2. (Every piston aircraft should have an engine monitor IMHO.) At the next annual inspection at a different shop, the IA discovered found some induction airbox seals missing, apparently left off when the exhaust fairing was installed. The seals were installed and CHTs returned to normal.

Sadly, the problem wasn’t caught early enough to prevent serious heat-related damage to the right-bank cylinders. All three jugs had compressions down in the 30s with leakage past the rings, and visible damage to the cylinder bores was visible under the borescope. The owner was faced with replacing three cylinders, around $6,000.

Sandel SN3308The next day, I heard from the owner of an older Cirrus SR22 complaining about intermittent heading errors on his Sandel SN3308 electronic HSI. These problems started occurring intermittently about three years earlier when the shop pull the instrument for a scheduled 200-hour lamp replacement.

Coincidence?

I’ve seen this in my own Sandel-equipped Cessna 310, and it’s invariably due to inadequate engagement between the connectors on the back of the instrument and the mating connectors in the mounting tray. You must slide the instrument into the tray just as far as possible before tightening the clamp; otherwise, you’ve set the stage for flaky electrical problems. This poor Cirrus owner had been suffering the consequences for three years. It took five minutes to re-rack the instrument and cure the problem.

Pitot-Static PlumbingNot long after that, I got a panicked phone call from one of my managed-maintenance clients who’d departed into actual IMC in his Cessna 340 with his family on board on the first flight after some minor avionics work. (Not smart IMHO.) As he entered the clag and climbed through 3,000 feet, all three of his static instruments—airspeed, altimeter, VSI—quit cold. Switching to alternate static didn’t cure the problem. The pilot kept his cool, confessed his predicament to ATC, successfully shot an ILS back to his home airport, then called me.

The moment I heard the symptoms, I knew exactly what happened because I’d seen it before. “Take the airplane back to the avionics shop,” I told the owner,  “and ask the tech to reconnect the static line that he disconnected.” A disconnected static line in a pressurized aircraft causes the static instruments to be referenced to cabin pressure. The moment the cabin pressurizes, those instruments stop working. MIF!

I know of at least three other similar incidents in pressurized singles and twins, all caused by failure of a mechanic to reconnect a disconnected static line. One resulted in a fatal accident, the others in underwear changes. The FARs require a static system leak test any time the static system is opened up, but clearly some technicians are not taking this seriously.

Causes of Accidents

Why do MIFs happen?

Numerous studies indicate that three-quarters of accidents are the fault of the pilot. The remaining one-quarter are machine-caused, and those are just about evenly divided between ones caused by aircraft design flaws  and ones caused by MIFs. That suggests one-eighth of accidents are maintenance-induced, a significant number.

The lion’s share of MIFs are errors of omission. These include fasteners left uninstalled or untightened, inspection panels left loose, fuel and oil caps left off, things left disconnected (e.g., static lines), and other reassembly tasks left undone.

Distractions play a big part in many of these omissions. A mechanic installs some fasteners finger-tight, then gets a phone call or goes on lunch break and forgets to finish the job by torqueing the fasteners. I have seen some of the best, most experienced mechanics I know fall victim to such seemingly rookie mistakes, and I know of several fatal accidents caused by such omissions.

Maintenance is invasive!

Whenever a mechanic takes something apart and puts it back together, there’s a risk that something won’t go back together quite right. Some procedures are more invasive than others, and invasive maintenance is especially risky.

Invasiveness is something we think about a lot in medicine. The standard treatment for gallstones used to be cholecystectomy (gall bladder removal), major abdominal surgery requiring a 5- to 8-inch incision. Recovery involved a week of hospitalization and several weeks of recovery at home. The risks were significant: My dad very nearly died as the result of complications following this procedure.

Nowadays there’s a far less invasive procedure—laproscopic cholecystectomy—that involves three tiny incisions and performed using a videoscope inserted through one incision and various microsurgery instruments inserted through the others. It is far less invasive than the open procedure. Recovery usually involves only one night in the hospital and a few days at home. The risk of complications is greatly reduced.

Similarly, some aircraft maintenance procedures are far more invasive than others. The more invasive the maintenance, the greater the risk of a MIF. When considering any maintenance task, we should always think carefully about how invasive it is, whether the benefit of performing the procedure is really worth the risk, and whether less invasive alternatives are available.

Ryan Stark of Blackstone LabsFor example, I was contacted by an aircraft owner who said that he’d recently received an oil analysis report showing an alarming increase in iron. The oil filter on his Continental IO-520 showed no visible metal. The lab report suggested flying another 25 hours and then submitting another oil sample for analysis.

The owner showed the oil analysis report to his A&P, who expressed grave concern that the elevated iron might indicate that one or more cam lobes were coming apart. The mechanic suggested pulling one or two cylinders and inspecting the camshaft.

Yikes! What was this mechanic thinking? No airplane has ever fallen out of the sky because of a cam or lifter problem. Many have done so following cylinder removal, the second most invasive thing you can do to an engine. (Only teardown is more invasive.)

The owner wisely decided to seek a second opinion before authorizing this exploratory surgery. I told him the elevated iron was almost certainly NOT due to cam lobe spalling. A disintegrating cam lobe throws off fairly large steel particles or whiskers that are usually visible during oil filter inspection. The fact that the oil filter was clean suggested that the elevated iron was coming from microscopic metal particles less than 25 microns in diameter, too small to be detectable in a filter inspection, but easily detectable via oil analysis. Such tiny particles were probably coming either from light rust on the cylinder walls or from some very slow wear process.

I suggested the owner have a borescope inspection of his cylinders to see whether the bores showed evidence of rust. I also advised that no invasive procedure (like cylinder removal) should ever be undertaken solely on the basis of a single oil analysis report. The oil lab was spot-on in recommending that the aircraft be flown another 25 hours. The A&P wasn’t thinking clearly.

Even if a cam inspection was warranted, there’s a far less invasive method. Instead of a 10-hour cylinder removal, the mechanic could pull the intake and exhaust lifters, and then determine the condition of the cam by inspecting it with a borescope through the lifter boss and, if warranted, probing the cam lobe with a sharp pick. Not only would this procedure require just 15% as much labor, but the risk of a MIF would be nil.

Sometimes, less is more

Many owners believe—and many mechanics preach—that preventive maintenance is inherently a good thing, and the more of it you do the better. I consider this wrongheaded. Mechanics often do far more preventive maintenance than necessary and often do it using unnecessarily invasive procedures, thereby increasing the likelihood that their efforts will actually cause failures rather than preventing them.
Mac Smith RCM Seminar DVDAnother of my earlier posts discussed Reliability-Centered Maintenance (RCM) developed at United Airlines in the late 1960s, and universally adopted by the airlines and the military during the 1970s. One of the major findings of RCM researchers was that preventive maintenance often does more harm than good, and that safety and reliability can often be improved dramatically by reducing the amount of PM and using minimally invasive techniques.

Unfortunately, this thinking doesn’t seem to have trickled down to piston GA, and is considered heresy by many GA mechanics because it contradicts everything they were taught in A&P school. The long-term solution is for GA mechanics to be trained in RCM principles, but that’s not likely to happen any time soon. In the short term, aircraft owners must think carefully before authorizing an A&P to perform invasive maintenance on their aircraft. When in doubt, get a second opinion.

The last line of defense

The most likely time for a mechanical failure to occur is the first flight after maintenance. Since the risk of such MIFs is substantial, it’s imperative that owners conduct a post-maintenance test flight—in VMC , without passengers, preferably close to the airport—before launching into the clag or putting passengers at risk. I think even the most innocuous maintenance task—even a routine oil change—deserves such a post-maintenance test flight. I do this any time I swing a wrench on my airplane.

You should, too.