Posts Tagged ‘Ron Rapp’

Blurred Lines

Monday, March 28th, 2016

The advent of smartphones and apps has led to a variety of creative new businesses which are reinventing how we shop, work, and communicate. They’re also changing how we travel by bringing private aviation to the masses.

Some of these concepts, like SurfAir, seem to be doing well, while for some reason east coast equivalent Beacon never really got off the ground. Others — Flytenow and AirPooler — were quashed by FAA determinations about their legality.

It was probably inevitable that this phenomenon would make it’s way into my own flying life. The company I work for has entered into a partnership with JetSmarter, a mobile marketplace for private jet charter that the Wall Street Journal described as the “Uber of the air”. We’re flying scheduled service between the coasts and other major cities as part of their “JetShuttle” program. Instead of chartering an entire airplane, you can now book a single seat of your choosing.

A typical Gulfstream interior.  This layout isn't just more comfortable -- it's also designed to facilitate discussion and interaction among the occupants.

A typical Gulfstream interior. This layout isn’t just more comfortable — it’s also designed to facilitate discussion and interaction among the occupants.

I’ve done a few of these trips so far and the passengers seem delighted with the ability to avoid most of the hassles typically associated with air travel and large hub airports. A business jet’s interior looks more like a living room than a typical airliner, so it tends to facilitate discussion and interaction between the passengers. Flight attendants have told me that by the end of the flight, strangers have become friends. And some business connections are probably being made as well.

The JetSmarter membership isn’t cheap. It costs $9,000 annually and requires a $3,000 initiation fee. On the other hand, when you compare it with the cost of chartering a large cabin business jet for even a single cross country flight, the price seems downright thrifty. It’s even competitive with first class airline travel, especially for those who travel frequently.

At first I wondered how this sort of thing would be legal. Wouldn’t scheduled service require a Part 121 certificate? Apparently not. JetSmarter’s model has been validated under 14 CFR Part 380, which requires those who wish to arrange public charters to have their prospectus approved by the Department of Transportation. JetSmarter doesn’t operate the aircraft or have “operational control” over the flights; they simply help facilitate the placement of individuals onto an approved Part 135 certificate holder’s airplane. In that regard they function more like a broker than a charter company. Incidentally, brokers are not regulated by the FAA, DOT, or anyone else that I’m aware of.

I never would have expected to be flying scheduled service while working in the charter industry, but that’s the sort of thing you get when disruptive technologies begin to work their magic. It blurs the lines between what we traditionally think of as airlines and charter companies. For most folks, the primary distinction has been the fixed schedule of the former versus the non-scheduled, or “on-demand”, nature of the latter. But times are changing, and the aviation industry with it.

I can think of several other examples of this phenomenon. I learned to fly about 20 years ago, and back in “the day”, a training airplane was almost invariably a 152/172 or Cherokee of some kind. Oh, you’d find the occasional Tomahawk or Citabria in use for that purpose, but for the most part it was a Skyhawk/Cherokee game. Today’s trainers come from an impressive fleet of Diamonds, Cirruses (yes, people do learn to fly in them), prototypical Cessnas and Pipers, and more LSAs than you can shake a stick at. If my experience is any indication, tailwheels are seeing a resurgence in training roles—something regular readers of mine will know I’m happy about. And there are probably ten thousand more homebuilts are out there than when I took my first flight.

Do I even need to mention about how the general aviation cockpit has changed over the same period? In the corporate aviation world, we’re seeing the first hints of supersonic aircraft on the horizon with the Aerion AS2, Spike S-512, and whatever Gulfstream has got up it’s sleeve after partnering with NASA, Sukhoi, and parent General Dynamics.

JetSmarter also made a deal to purchase my company’s empty charter legs for the next few years. Traditional charter flights are priced round-trip, because even if the passengers only want to fly one way, the company has to get the plane back to its home base. The ability to offload those empty flights to a third-party for resale helps the bottom line and connects passengers with flights that meet their needs.

Any way you slice it, this is an exciting time to be part of the aviation world. I can’t help but wonder what they’ll think of next.

Manual Flying Skills: Keep ‘Em Sharp

Monday, February 29th, 2016

I’ve taught aerobatic and upset recovery courses to many aviators over the years, and almost without exception am told at the conclusion of training that it represented the best investment of time and money they’d ever spent on improving their skills and confidence as a pilot.

In recent years, the corporate, charter, and airline pilots have begun seeking out this kind of skill set as well. It’s a good thing, because as the Department of Transportation recently reported, some of today’s pilots may not have The Right Stuff.

Where the cockpit is concerned, modern light GA aircraft have a lot in common with the latest crop of business jets and airliners. Under normal circumstances these advanced cockpits add to safety. But when things go awry? Well, as our airplanes become more advanced, they also become more complicated, and that can lead to situations which are not covered by handbooks, manuals, and type-specific training.

We’ve all seen the result of unexpected system failures which were not handled properly by the crew. In recent years, Air France 447 suffered from pitot icing which overcame the tube’s heating element and caused air data errors. During the resulting confusion, the crew entered a stall at 38,000 feet which did not end until the Airbus impacted the ocean. Last December, Indonesia AirAsia Flight 8501’s crew responded to a malfunction of the aircraft’s rudder limiter by pulling a Flight Augmentation Computer circuit breaker, which had the unintended consequence of disabling the autopilot. The pilots stalled the aircraft and it ultimately crashed into the Java Sea.

Just to show you that this isn’t something that only happens to “other people,” let me give you two examples of my own. I was flying a Gulfstream IV one afternoon when a wide variety of seemingly unrelated components began to fail. Over the course of 45 minutes or so, we lost air data computers, autothrottles, both autopilots, mach trim compensation, yaw dampening, pitch trim, the flight guidance panel, one altitude encoder, cockpit displays, a display controller, symbol generator, TCAS, an inertial reference unit, and many other elements.

Some of these items dropped offline completely. Others froze or began to malfunction. Some were annunciated on the Crew Alerting System, others were not. Now I knew these components were not on the same bus, nor did they have much in common except that they were electrically powered. Yet the electrical system appeared to be operating normally. We were in visual conditions and not far from landing, which added to the pressure. There’s no checklist for this situation, nor was it ever discussed or simulated during training. Do we land? The aircraft’s braking system is electrical. Should we hold?

Without getting into too much detail, this flight ended uneventfully, but by the time we did touch down, I was basically flying the world’s largest Piper Cub: nothing but a stick, throttle, a couple of analog gauges, and a window to look outside. And that was all I needed. As I recall, the failure was traced to a series of malfunctioning relays under the cockpit floor. Our success was a result of focusing on the basic task of flying the airplane. It’s easy to say, but much harder to do when you’re busy and unsure of what’s really going on with your (normally) trusty aircraft. Failures of this kind cause a rapid loss of confidence in the overall airplane. You’re constantly wondering what will fail next.

The second example was related by a friend of mine. After departure, she lost the #1 comm radio. Not a big deal — the jet has two of them. A little while later, that radio also failed. Over the next few minutes, the flight data recorder failed, followed by the slats, flaps, an AHRS, and other associated componentry. The crew was in instrument weather and flew according to lost communication rules, finally making a high speed, no flap/no slat landing at their destination. Their troubles were caused by a cracked potable water tank, which flooded an electrical equipment bay under the rear floor of the aircraft. Gravity being what it is, one might wonder why important circuit boards are located underneath a water tank… but that’s an issue for another day.

So what does this have to do with upset recovery training? Plenty. The odds of coming out of these scenarios in one piece is directly related to the pilot’s ability to retain control of a malfunctioning aircraft, and that’s when the workload falls heavily on his or her manual flying skills. Truth be told, today’s highly automated airplanes don’t help prepare us for situations of this kind. They do the opposite, physically flying the airplane for us most of the time.

Dassault's Falcon 7X

Dassault’s Falcon 7X

You never know when sharp manual flying skills will pay off. In May of 2011, a Falcon 7X on approach into Kuala Lumpur experienced a rapid nose-up runaway trim condition which could not be stopped. The Falcon 7X was the first fly-by-wire business jet and had been in service for only four years, so this incident caught the attention of many people. It was serious enough that the entire 7X fleet was subsequently grounded. The final accident report was not issued until February of 2016, almost five years later, which should provide an indication of how complex the accident chain was on this event.

Oh, and the crew? They did it right, using a manual flying technique which, while it’s not taught in any type rating course I’m aware of, is taught by myself and others with an aerobatic background. In this case, the pilot learned it while flying Dassault’s other line of airplanes for the military:

While descending through 13000 feet, towards Kuala Lumpur, the elevator pitch trim began to move from neutral to the full nose-up position in 15 seconds time. This resulted in a sudden pitch up of the aircraft to 40° and the aircraft entering a climb. Initially both the captain (Pilot Monitoring) and the copilot (Pilot Flying) were both using the side stick in an attempt to regain control. The copilot then used the priority button to override the captain’s side stick inputs and asked him to stop. The copilot, a former military pilot with experience on Mirage IV and Mirage 2000 jets, then put the aircraft in a right hand bank to a maximum of 98 degrees.

Sudden, uncommanded full nose-up trim is about as bad as it gets when you’re talking about loss-of-control scenarios, yet the pilot was astute enough to remember that he could offset the unwanted lift by banking the jet. Have you been trained on this technique? The pilot had to deal with a beyond-knife-edge flight attitude, load factors as high as 4.6 G, and altitude which ballooned from 13,000 feet to 22,500 feet. What a ride that must have been!

I wasn’t able to locate an English version of the final BEA report, but the French original notes that “the Pilot Flying had performed this maneuver many times during his military career.” After 2 minutes and 35 seconds, the trim motor overheated and was finally cut off, allowing the crew to regain pitch control.

The investigation determined that a small soldering defect on one pin of a computer chip in the Horizontal Stabilizer Electronic Control Unit (HSECU) caused the nose-up instruction to be sent to the Tail Horizontal Stabilizer trim module. Think about the sheer volume of pins, solders, computer chips, and wiring in a modern airplane and you’ll start to realize that these aren’t far-fetched stories borne out of a science fiction novel.

As I said at the top, our aircraft are becoming more complex, and there’s no reason to expect that trend to change. This increases the likelihood of failures and scenarios for which we have not trained. If you’ll pardon the pun, when the chips are down, it’s usually the person behind the controls who determines whether the situation ends with a classic there-I-was hangar story or a fatal accident report.

Time and time again, we see that manual flying skills are as critical to safe flight as any powerplant or airfoil. Let’s keep ’em sharp.

The Normalization of Deviance

Monday, December 7th, 2015

Like many pilots, I read accident reports all the time. This may seem morbid to people outside “the biz”, but those of us on the inside know that learning what went wrong is an important step in avoiding the fate suffered by those aviators. And after fifteen years in the flying business, the NTSB’s recently-released report on the 2014 Gulfstream IV crash in Bedford, Massachusetts is one of the most disturbing I’ve ever laid eyes on.

If you’re not familiar with the accident, it’s quite simple to explain: the highly experienced crew of a Gulfstream IV-SP attempted to takeoff with the gust lock (often referred to as a “control lock”) engaged. The aircraft exited the end of the runway and broke apart when it encountered a steep culvert. The ensuing fire killed all aboard.

Sounds pretty open-and shut, doesn’t it? There have been dozens of accidents caused by the flight crew’s failure to remove the gust/control lock prior to flight. Professional test pilots have done it on multiple occasions, ranging from the prototype B-17 bomber in 1935 to the DHC-4 Caribou in 1992. But in this case, the NTSB report details a long series of actions and habitual behaviors which are so far beyond the pale that they defy the standard description of “pilot error”.

Just the Facts

Let me summarize the ten most pertinent errors and omissions of this incident for you:

  1. There are five checklists which must be run prior to flying. The pilots ran none of them. CVR data and pilot interviews revealed that checklists simply were not used. This was not an anomaly, it was standard operating procedure for them.
  2. Obviously the gust lock was not removed prior to flying. This is a very big, very visible, bright red handle which sticks up vertically right between the throttles and the flap handle. As the Simon & Chabris selective attention test demonstrates, it’s not necessarily hard to miss the gust lock handle protruding six inches above the rest of the center pedestal. But it’s also the precise reason we have checklists and procedures in the first place.
  3. Flight control checks were not performed on this flight, nor were they ever performed. Hundreds of flights worth of data from the FDR and pilot interviews confirm it.
  4. The crew received a Rudder Limit message indicating that the rudder’s load limiter had activated. This is abnormal. The crew saw the alert. We know this because it was verbalized. Action taken? None.
  5. The pilot flying (PF) was unable to push the power levers far enough forward to achieve takeoff thrust. Worse, he actually verbalized that he wasn’t able to get full power, yet continued the takeoff anyway.
  6. The pilot not flying (PNF) was supposed to monitor the engines and verbally call out when takeoff power was set. He failed to perform this task.
  7. Aerodynamics naturally move the elevator up (and therefore the control column aft) aft as the airplane accelerates. Gulfstream pilots are trained to look for this. It didn’t happen, and it wasn’t caught by either pilot.
  8. The pilot flying realized the gust lock was engaged, and said so verbally several times. At this point, the aircraft was traveling 128 knots had used 3,100 feet of runway; about 5,000 feet remained. In other words, they had plenty of time to abort the takeoff. They chose to continue anyway.
  9. One of the pilots pulled the flight power shutoff handle to remove hydraulic pressure from the flight controls in an attempt to release the gust lock while accelerating down the runway. The FPSOV was not designed for this purpose, and you won’t find any G-IV manual advocating this procedure. Because it doesn’t work.
  10. By the time they realized it wouldn’t work and began the abort attempt, it was too late. The aircraft was traveling at 162 knots (186 mph!) and only about 2,700 feet of pavement remained. The hydraulically-actuated ground spoilers — which greatly aid in stopping the aircraft by placing most of its weight back on the wheels to increase rolling resistance and braking efficiency — were no longer available because the crew had removed hydraulic power to the flight controls.

Industry Responses

Gulfstream has been sued by the victim’s families. Attorneys claim that the gust lock was defective, and that this is the primary reason for the crash. False. The gust lock is designed to prevent damage to the flight controls from wind gusts. It does that job admirably. It also prevents application of full takeoff power, but the fact that the pilot was able to physically push the power levers so far forward simply illustrates that anything can be broken if you put enough muscle into it.

The throttle portion of the gust lock may have failed to meet a technical certification requirement, but it was not the cause of the accident. The responsibility for ensuring the gust lock is disengaged prior to takeoff lies with the pilots, not the manufacturer of the airplane.

Gulfstream pilot and Code7700 author James Albright calls the crash involuntary manslaughter. I agree. This wasn’t a normal accident chain. The pilots knew what was wrong while there was still plenty of time to stop it. They had all the facts you and I have today. They chose to continue anyway. It’s the most inexplicable thing I’ve yet seen a professional pilot do, and I’ve seen a lot of crazy things. If locked flight controls don’t prompt a takeoff abort, nothing will.

Albright’s analysis is outstanding: direct and factual. I predict there will be no shortage of articles and opinions on this accident. It will be pointed to and discussed for years as a bright, shining example of how not to operate an aircraft.

In response to the crash, former NTSB member John Goglia has called for video cameras in the cockpit, with footage to be regularly reviewed to ensure pilots are completing checklists. Despite the good intentions, this proposal would not achieve the desired end. Pilots are already work in the presence of cockpit voice recorders, flight data recorders, ATC communication recording, radar data recording, and more. If a pilot needs to be videotaped too, I’d respectfully suggest that this person should be relieved of duty. No, the problem here is not going to be solved by hauling Big Brother further into the cockpit.

A better model would be that of the FOQA program, where information from flight data recorders is downloaded and analyzed periodically in a no-hazard environment. The pilots, the company, and the FAA each get something valuable. It’s less stick, more carrot. I would also add that this sort of program is in keeping with the Fed’s recent emphasis on compliance over enforcement action.

The Normalization of Deviance

What I, and probably you, are most interested in is determining how well-respected, experienced, and accomplished pilots who’ve been through the best training the industry has to offer reached the point where their performance is so bad that a CFI wouldn’t accept it from a primary student on their very first flight.

After reading through the litany of errors and malfeasance present in this accident report, it’s tempting to brush the whole thing off and say “this could never happen to me.” I sincerely believe doing so would be a grave mistake. It absolutely can happen to any of us, just as it has to plenty of well-trained, experienced, intelligent pilots. Test pilots. People who are much better than you or I will ever be.

But how? Clearly the Bedford pilots were capable of following proper procedures, and did so at carefully selected times: at recurrent training events, during IS-BAO audits, on checkrides, and various other occasions.

Goglia, Albright, the NTSB, and others are focusing on “complacency” as a root cause, but I believe there’s a better explanation. The true accident chain on this crash formed over a long, long period of time — decades, most likely — through a process known as the normalization of deviance.

Social normalization of deviance means that people within the organization become so much accustomed to a deviant behavior that they don’t consider it as deviant, despite the fact that they far exceed their own rules for the elementary safety. People grow more accustomed to the deviant behavior the more it occurs. To people outside of the organization, the activities seem deviant; however, people within the organization do not recognize the deviance because it is seen as a normal occurrence. In hindsight, people within the organization realize that their seemingly normal behavior was deviant.

This concept was developed by sociologist and Columbia University professor Diane Vaughan after the Challenger explosion. NASA fell victim to it in 1986, and then got hit again when the Columbia disaster occurred in 2003. If they couldn’t escape its clutches, you might wonder what hope we have. Well, for one thing, spaceflight in general and the shuttle program in particular are specialized, experimental types of flying. They demand acceptance of a far higher risk profile than corporate, charter, and private aviation.

I believe the first step in avoiding “normalization of deviance” is awareness, just as admitting you have a problem is the first step in recovery from substance addiction. After all, if you can’t detect the presence of a problem, how can you possibly fix it?

There are several factors which tend to sprout normalization of deviance:

  • First and foremost is the attitude that rules are stupid and/or inefficient. Pilots, who tend to be independent Type A personalities anyway, often develop shortcuts or workarounds when the checklist, regulation, training, or professional standard seems inefficient. Example: the boss in on board and we can’t sit here for several minutes running checklists; I did a cockpit flow, so let’s just get going!
  • Sometimes pilots learn a deviation without realizing it. Formalized training only covers part of what an aviator needs to know to fly in the real world. The rest comes from senior pilots, training captains, and tribal knowledge. What’s taught is not always correct.
  • Often, the internal justification for cognizant rule breaking includes the “good” of the company or customer, often where the rule or standard is perceived as counterproductive. In the case of corporate or charter flying, it’s the argument that the passenger shouldn’t have to (or doesn’t want to) wait. I’ve seen examples of pilots starting engines while the passengers are still boarding, or while the copilot is still loading luggage. Are we at war? Under threat of physical attack? Is there some reason a 2 minute delay is going to cause the world to stop turning?
  • The last step in the process is silence. Co-workers are afraid to speak up, and understandably so. The cockpit is already a small place. It gets a lot smaller when disagreements start to brew between crew members. In the case of contract pilots, it may result in the loss of a regular customer. Unfortunately, the likelihood that rule violations will become normalized increases if those who see them refuse to intervene.

The normalization of deviance can be stopped, but doing so is neither easy or comfortable. It requires a willingness to confront such deviance when it is seen, lest it metastasize to the point we read about in the Bedford NTSB report. It also requires buy-in from pilots on the procedures and training they receive. When those things are viewed as “checking a box” rather than bona fide safety elements, it becomes natural to downplay their importance.

Many of you know I am not exactly a fan of the Part 121 airline scene, but it’s hard to argue with the success airlines have had in this area. When I flew for Dynamic Aviation’s California Medfly operation here in Southern California, procedures and checklists were followed with that level of precision and dedication. As a result, the CMF program has logged several decades of safe operation despite the high-risk nature of the job.

Whether you’re flying friends & family, pallets of cargo, or the general public, we all have the same basic goal: to aviate without ending up in an embarrassing NTSB report whose facts leave no doubt about how badly we screwed up. The normalization of deviance is like corrosion: an insidious, ever-present, naturally occurring enemy which will weaken and eventually destroy us. If we let it.

See & Avoid Doesn’t Work

Tuesday, November 10th, 2015

Contemplate the worst scenario that might confront a pilot during a flight. What comes to mind? Fire? Flight control failure? Engine failure? Perhaps it’s flight crew incapacitation, explosive decompression or severe structural damage.

No doubt about it, those all fall into the Very Bad Day category. But there’s one that can be even worse: a mid-air collision. That’s because it can involve all the problems listed above — at the same time. And since the parties involved aren’t aware of the impending crunch until it’s too late, the mid-air is usually accompanied by a violent element of surprise, confusion, and initial denial.

You might think fatal mid-airs are rare events, and from a purely statistical standpoint I’d have to agree. According to the 2010 Nall Report, a fatal mid-air occurs about once every 8 million flight hours. Think of it as the roughly the same odds as winning the lottery or being struck by lighting. Doesn’t sound so bad, does it? A typical GA pilot might accumulate but thousand or so hours over a full lifetime of flying.

So what’s there to worry about? Plenty. The “big sky” theory may sound good, but it doesn’t hold up very well under close scrutiny. It’s true that the navigable atmosphere over the United States alone is massive — about 20 million cubic miles — and there are relatively few airplanes in the sky. Even on those occasions where a collision is possible, modern tools such as radar, TCAS, VHF communication, and anywhere between two and four sets of eyeballs almost always succeed in averting the disaster. If aircraft were equally distributed throughout the atmosphere, the “big sky” idea would be pretty comforting.

But airplanes cluster near airports, large cities, and on thin slices of the sky known as “airways”. For the VFR types, airspace and terrain often crowd planes into small swaths of the air in places like the Santa Ana Canyon or Banning Pass. The sky is much like the ground: vehicles stick to relatively confined spaces and that makes collisions a serious hazard.

Since we’re on the topic of statistics, let me give you a few of my own: I personally know two people who have been struck by lightning, and a winning lottery ticket was recently sold not 300 feet from my front door. Hey, crazy stuff happens. But unlike lighting strikes and golden tickets, we’re not all facing the same odds. The risk profile varies widely depending on the type of flying you’re doing.

For example, flight instruction is frequently a factor; thirty-seven percent of mid-airs occur with a CFI on board. Many instructional flights happen near airports, and as previously mentioned, that’s where other airplanes tend to congregate. On the other hand, if you fly airliners, your risk of a mid-air is rather low because the aircraft itself is large and easy to see, you’re always flying IFR, and the most sophisticated traffic avoidance hardware available is always installed. Airliners also spend most of their time in cruise and are in constant radar contact with ATC.

Midair collisions are almost as old as powered flight itself.  This B-17 collided with a German fighter over Tunisia in 1943.

Midair collisions are almost as old as powered flight itself. This B-17 collided with a German fighter over Tunisia in 1943.

Think it can’t happen to you? Think again. Some very talented, capable, and well-respected pilots have been involved in mid-air collisions. I know a guy who was involved in one while flying a large-cabin, TCAS-equipped business jet under Instrument Flight Rules. Alan Klapmeier, the founder of Cirrus Aircraft, was in one too. Richard Collins, famed Flying columnist, was in a mid-air. Speaking of Flying, the recent Editor-in-Chief owns a very nice Cirrus SR-22 which was in a mid-air. And lastly, a decade ago I was in a mid-air collision myself.

I’ll save the blow-by-blow (no pun intended) on that for another day. The point I’m trying to make is that the odds of a mid-air are probably greater than you think, especially if you live in a populated metropolitan area and fly VFR. If you’ve ever had a close encounter with another airplane in flight, you were only separated from “those who have” by nothing more than a miniscule sliver of plain old luck.

Think about that for a moment.

This may be hard to believe, but there is some good news. For one thing, mid-airs are not always fatal. It seems intuitive that most collisions would involve fatalities, but all the people I cited above survived, including (obviously) myself. Also, technology is rapidly advancing, from cheap TCAD boxes to airframe parachutes to super-bright LED exterior lighting.

The question we should all be asking ourselves is how we avoid ending up in a mid-air, fatal or otherwise. If you refer to official guidance from the FAA, the answer is to simply look out the window and spot the other airplane before it hits you. This technique, referred to as “see and avoid”, is still considered adequate for preventing collisions. Here are a couple of passages from Chapter 1 of the Airplane Flying Handbook:

The “See and Avoid” concept relies on knowledge of the limitations of the human eye, and the use of proper visual scanning techniques to help compensate for these limitations. The importance of, and the proper techniques for, visual scanning should be taught to a student pilot at the very beginning of flight training.

Proper clearing procedures, combined with proper visual scanning techniques, are the most
effective strategy for collision avoidance.

Other FAA publications, ranging from the Aeronautical Information Manual, to Advisory Circulars like AC-90-48 (“Pilot’s Role in Collision Avoidance”) will give you the same spiel: “see and avoid will keep you safe”. And it will! Until it doesn’t.

From my perspective as someone who’s been in a mid-air and who was using proper clearing and scanning techniques at the time, I take it as gospel that “see & avoid” won’t always do the trick. I’m just one guy, of course. But many others — some institutional in nature — just happen to agree with me.

For example, a couple of years ago Canada’s Transportation Safety Board issued an accident report on a mid-air collision between a Beech V-35B Bonanza and a PA-28 Cherokee over northern Virginia. Canada was tasked with performing the investigation because the pilots of the Bonanza were employees of the NTSB while the Cherokee was piloted by an employee of the FAA.

I won’t keep you in suspense. The conclusion from the TSB was that the “see and avoid” concept was inadequate. They even quoted a 1991 report produced by the Australian Transport Safety Bureau which provides an overview of the major factors that limit the effectiveness of the see-and-avoid principle in preventing mid-air collisions, as well as a 2005 scientific study published in Aviation, Space, and Environmental Medicine which came to the same conclusions.

The main points:

  • Cockpit workload and other factors reduce the time that pilots spend in traffic scans, and even when pilots are looking out, there is no guarantee that other aircraft will be sighted.
  • Visual scanning involves moving the eyes in order to bring successive areas of the visual field onto the small area of sharp vision in the center of the eye. The process is frequently unsystematic and may leave large areas of the field of view unsearched.
  • A thorough, systematic search is not a solution as in most cases it would take an impractical amount of time.
  • The physical limitations of the human eye are such that even the most careful search does not guarantee that traffic will be sighted.
  • The pilot’s functional visual field contracts under conditions of stress or increased workload. The resulting ‘tunnel vision’ reduces the chance that an approaching aircraft will be seen in peripheral vision.
  • The human visual system is better at detecting moving targets than stationary targets, yet in most cases, an aircraft on a collision course appears as a stationary target in the pilot’s visual field.
  • An approaching aircraft, in many cases, presents a very small visual angle until a short time before impact.
  • Complex backgrounds such as ground features or clouds hamper the identification of aircraft via a visual effect known as ‘contour interaction’. This occurs when background contours interact with the form of the aircraft, producing a less distinct image.
  • Even when an approaching aircraft has been sighted, there is no guarantee that evasive action will be successful.
  • Because of its many limitations, the see-and-avoid concept should not be expected to fulfill a significant role in future air traffic systems.
  • Transportation Safety Board of Canada aviation investigation report A06O0206 identified that there is a high risk of mid-air collisions in congested airspace when aircraft are not alerted to the presence of other aircraft and rely solely on the see‑and-avoid principle.

There’s one more area of the TSB report which is worth of quotation. In it, they reference a British Royal Air Force study into mid-air collisions. If you’re keeping score, that’s the third sovereign agency to reach the conclusion that “see and avoid” is inadequate. Yet our own FAA, which oversees about 80% of the world’s aircraft and almost all of the high traffic density airspace, still officially proclaims that one can look out the window and see everything that needs to be seen.

This accident has demonstrated yet again that relying solely on the see-and-avoid principle to avoid collisions between aircraft operating under visual flight rules (VFR) in congested airspace is inadequate.

A number of international studies have addressed the overall issue of the effectiveness of the see-and-avoid principle, as well as the risks of collision associated with this principle. All acknowledged the underlying physiological limitations at play and that, when mid-air collisions occur, “failure to see-and-avoid is due almost entirely to the failure to see.”

One study stated that “our data suggest that the relatively low (though unacceptable) rate of mid-air collisions in general aviation aircraft not equipped with TCAS [traffic alert and collision avoidance system] is as much a function of the ‘big sky’ as it is of effective visual scanning.”

A British Royal Air Force study into mid-air collisions, which were deemed to be random, found that the probability of conflict is proportional to the square of the traffic density, and recommended avoiding altitude restrictions that concentrate traffic.

Measures such as improving aircraft conspicuity, pilot scanning techniques, and pilot traffic awareness can reduce risks, but they do not overcome the underlying physiological limitations that create the residual risk associated with a see-and-avoid method.

It’s obvious that “see and avoid” cannot, by itself, ensure our safety. If it could, there’d be no need for TCAS or most of our controlled airspace (both of which came about because of high-profile mid-air collisions, I might add!). I’m not necessarily in favor of mandating any additional equipment, airspace, or restrictions, especially on general aviation. But it’s clear that serious changes are needed in how collision avoidance is taught, especially as it concerns “see and avoid”. The concept has serious limitations which must be understood so the pilot-in-command can make educated decisions about how — or even if — they want to mitigate those risks.

I sincerely hope our nation’s regulatory and safety organizations will eventually acknowledge what we all know to be true: “see and avoid”, while a good start and certainly a vital part of collision avoidance, is simply not sufficient to ensure traffic separation.

What a country!

Tuesday, October 6th, 2015

“No one realizes how beautiful it is to travel until he comes home and rests his head on his old, familiar pillow.” –Lin Yutang

Even before I started flying for a living, traveling internationally always made me appreciate what we have here at home. Most people are aware of the hassles involved with long-distance international journeys: you’ve gotta consider passports, visas, different electrical outlets and voltages, language barriers, currency exchange, jet lag, and more. Perhaps that’s one of the reasons traveling the world can be so rewarding: much like flying, it’s not easy. You’ve got to earn it.

When you’re the one doing the flying, things are even more complicated. If you’ve followed the travails of any of the Earthrounders – people who fly light GA aircraft around the world, often to raise money or set some kind of record – you’ll notice they all have one thing in common: an inordinate number of delays, problems, and hassles in transiting from one country to another. Given the fact that those of us who do it for a living are not only more experienced with international operations, but also have professional dispatchers, handlers, and staff behind us, you’d think we’d eventually surmount these obstacles.

You’d be wrong.

My trusty steed is fueled and ready for  departure on another intercontinental trip.

My trusty steed is fueled and ready for departure on another intercontinental trip.

I recently participated in a series of trips which took our airplane to China and back – twice – and then eastbound across the world to explore Africa before coming home. It once again reminded me of what incredible barriers humans can erect to keep would-be travelers tied up in bureaucratic knots.

Here are just a few examples:

Visas. Sometimes we need them, sometimes not. Other times crew members have their own specific visa requirements. If you get it wrong, you’ll find yourself missing that flight you were supposed to be on. It’s an especially big problem if you were the one who was supposed to be piloting the plane! There are some countries where even with the right paperwork, you’ll be denied entry if they see you’ve been to a country with which they’re on unfriendly terms.

Customs. It’s bad everywhere, but this might be one place where returning to the U.S. is the worst. I once had a passenger manifest consisting of a half-dozen U.S. Customs agents. I figured we’d breeze through the clearance process upon returning to the United States – after all, these guys had diplomatic passports and active Immigration & Customs Enforcement credentials. The reality? We had to shut down the aircraft, offload all luggage, and traipse across a large airport to clear Customs. One of our passengers was detained briefly because he had a “common name”. I was baffled. If Customs doesn’t trust Customs agents from their own department, there’s something wrong.

Handlers. When flying internationally, we hire professionals who specialize in dealing with the local procedures, folks who know the ropes and speak the language. They arrange our fueling, interface with ramp personnel, airport employees, drivers, and so on. They handle the paperwork and speed us on our way. Or not. Some handlers do a great job, others are awful. On one trip I handed off the aircraft to a subsequent crew who were literally held up – detained — for a cash “fee” by the handler who was supposed to be keeping just that sort of thing from happening. It’s like being robbed at gunpoint by your own bank.

Flight planning. In the United States, we take many things for granted. Altitudes are given in feet. Speeds are expressed in knots or miles per hour. Fuel is dispensed in gallons. Once you venture abroad, you’ll find countries which utilize things like meters, hectopascals, and liters. I haven’t seen cubits or fathoms used yet, but it wouldn’t surprise me. There are places where altitudes are sometimes in meters, other times in feet. In certain countries, usually those with plenty of mountainous terrain, altitudes are referenced to the airport elevation rather than sea level. It’s easy to confuse terms like QNH, QFE, and QNE. Get it wrong in those places and you can find yourself flying into the side of a mountain!

This will soon replace the domestic IFR flight plan form as the U.S. conforms to ICAO standards.

This will soon replace the domestic IFR flight plan form as the U.S. conforms to ICAO standards.

Paperwork. In the U.S., we can get weather information from a wide variety of sources, from telephone briefings to iPhone apps. Abroad, you’ll find yourself forced to purchase, if not use, their weather products. You’ll be required to obtain various stamps and approvals. This can involve long waits and unexpected delays. Indians seem to love their paperwork more than just about anyone I’ve seen. Overflight or landing permits can take days, sometimes weeks to obtain. In countries like China or Russia, there are no short-notice trips for private or business aircraft because they’re impossible. Change your plans? Running late? You’re just out of luck.
Even in Europe, flights can require slot reservations, much the way special events like the Super Bowl do here in the U.S. If you miss your slot time, you go to the bottom of the list. Have you ever seen an ICAO international flight plan form? I’ve seen one wrong mark on this form ground a flight for hours.

Costs. Landing, ramp, and other fees can be dramatically higher in foreign countries than in the United States. This extends to things like catering, water & lav services, and even plain old ice. In Geneva, an Italian pilot with whom I used to fly reported paying more than $1,000 to have a bag of ice delivered to the aircraft.

Ramp checks. You think having an FAA inspector ask for your pilot certificate and medical is bad? Try the European equivalent, a SAFA (Safety Assessment of Foreign Aircraft) check. A team of inspectors will crawl all over the interior and exterior of the aircraft, checking emergency exits, altimeters, flight recorders, navigation charts, emergency equipment, pilot training records, placards, and everything else you can possibly think of.

Accessibility. We take it for granted that you can fly VFR anywhere you want in the U.S., even at night. We can go to the busiest airports, and they are prohibited from discriminating against general aviation or any class of operator. Many countries do not allow VFR at night, single engine IFR, experimental aircraft, aerobatics, or GA flight over populated areas.

Don’t get me wrong, there’s plenty to love about international travel, but the process of flying abroad is usually far more expensive, slow, and cumbersome than it needs to be. If you’re the guy in the left seat, it’s best to take to heart the words of Chinese philosopher Lao Tzu, who prophetically stated that “a good traveler has no fixed plans, and is not intent on arriving.”

Though for very different reasons, whether I’m landing at home or abroad, I always end up thinking to myself, “What a country!”

Perspectives on GA safety

Tuesday, September 8th, 2015

Well, it’s that time of year again: as summertime recedes in the rear-view mirror, I’m packing my computer bag, a few snacks to eat on the (Air)bus, and heading back to school.

In case you’re wondering, yes, I did graduate from high school. And college, believe it or not — I’ve got the diploma to prove it! No, this late summer tradition is my annual trip to Dallas for recurrent training on the G-IV: five days of classroom learning and simulator sessions, ending with a formal checkride.

One of the questions typically asked by the instructor on our first day of class is if anyone has experienced anything in the previous year which was particularly noteworthy or unusual. A system failure, something of that nature. I’ve been pretty fortunate; the company I fly for does a bang-up job maintaining the fleet.

But while mentally reviewing the past year’s trips, my mind drifted off to the place where my heart truly belongs: light general aviation flying. Maybe it’s because the latest Joseph T. Nall Report was recently released by AOPA’s Air Safety Institute. Anyway, I don’t mind admitting a bit of wistfulness that GA can’t claim the same safety record that air carriers — even non-scheduled ones like mine that fly all over the world at a moment’s notice — enjoy.

Nevertheless, in an odd way I take comfort in the fact that the Part 91 safety record isn’t as good. That probably sounds awful, but look at it from a logical standpoint: Part 121/135 represent very specific kinds of highly structured and limited flying, whereas “GA” represents everything from airshow acts and experimental aviation to medevac and ultralights. It covers a wide and vibrant variety of aviation activity.

GA has a higher accident rate than the airlines for many reasons, but the primary one is that GA pilots have the freedom to do many things that the airline guys do not. And I hope that never changes. To paraphrase Dick Rutan, where would we be without those who were willing to risk life and limb using their freedom to do these things? We’d be safe and sound, on the ground, still headed west as we look out over the rump of oxen from our covered wagons.

Whether it’s cruising down the coast at 500′ enjoying the view, taking an aerobatic flight, flying formation, flight testing an experimental airplane, or landing on a sandbar, beach, grass strip, or back-country field, it’s important that private individuals not find themselves restricted to the ways and means of Part 121 operations. We do the stuff that makes flying fun! Doing it “like the airlines” can only drive up the price and suck out the fun of aviation. For better or worse, part of that cost is in increased risk.

Richard Collins stated this quite elegantly when he said, “Lumping general aviation safety together is an accepted practice but it is not realistic. The activities are too diverse and need to be considered separately. There is instructional flying, recreational flying, agricultural flying, private air transportation flying and professional flying. The airplanes range from ultralights to intercontinental jets. Even in the same area, different airplanes have varying accident rates. The only safety concern that spans everything is crashing but the frequency of and reasons for the crashing vary widely according to the type flying and even the type aircraft flown. In each area, the safety record we get is a product of the rules, the pilots involved, the airplanes, and the environment in which the pilots fly those airplanes. To make any change in the record, one or all those elements would have to be modified.”

I don’t always see eye-to-eye with Collins, but this is a case where we are in violent agreement. One of the beauties of our Part 91 is that the pilot gets the freedom to choose how far he wants to go in that regard. If you want to file IFR everywhere and only fly with multiple turbine engines in day VMC, fine. That’s your choice. For others, flying in the mountain canyons in a single-engine piston and landing on a short one-way strip on the side of a steep hill is well within their risk tolerance. There are some (I’m looking at you, Team Aerodynamix) for whom a large group of owner-built airplanes flying low-altitude formation aerobatics at night is perfectly acceptable. Whether we are personally engaged in that activity or not, how can one argue that these activities don’t benefit the entire GA community? What excitement and passion they engender for aviation! And how they set us apart from the rest of the world, who for the most part look on with envy at something they will never be “allowed” to do.

Don’t get me wrong. I’m certainly not opposed to better equipment, more training, or higher standards for general aviation. Those things are all important, and I advocate for them constantly. But if experience has taught us anything, it’s that these measures will only be effective when they come from within rather than being imposed from a bureaucracy which already demands so much.

Special Mission Aircraft

Tuesday, August 11th, 2015

My last flight assignment consisted of four days in Hawaii. It was one of those trips which make me (almost) feel guilty for associating it with the word “work.” Of course, there are plenty of journeys which are the polar opposite: long overnight flights, challenging weather, and minimum rest. But when you’re relaxing on a warm tropical island, those thoughts are easily banished to the back of one’s mind. For the moment, at least, the life of a charter pilot is a charmed one indeed!

This external pod really caught my eye when we passed it on the ramp. It contains the Earth Observing Laboratory's W-band cloud radar.

This external pod really caught my eye when we passed it on the ramp. It contains the Earth Observing Laboratory’s W-band cloud radar.

As we taxied onto the ramp at Kona International Airport (PHKO) after a beautiful flight out from the mainland, one particular aircraft caught my eye. It wasn’t the brand new G650 perched majestically at the front of a line of business jets but rather the aircraft next to it, a colorfully painted Gulfstream V equipped with pointy, silver-tipped under-wing-mounted pods. If it wasn’t for the words “National Center for Atmospheric Research” painted above the cabin windows, one might have wondered if this wasn’t some sort of weapons system.

I suddenly remembered that Hurricane Guillermo was slowly churning toward Hawaii from the southeast. The storm was still nearly a thousand miles from the archipelago and hadn’t impacted our flight that day in the slightest. As they say, “out of sight, out of mind.” I assume the G-V was there to conduct research on the storm systems (there were several large ones) brewing in the Pacific Ocean. And if the crew was able to spend a bit of time laying out by the pool… well, that’s just a cross they’d have to bear.

That uniquely outfitted airplane got me thinking about “special mission” aircraft and how business jets serve millions of people who never get to ride in them and are probably not even aware of their existence. Even among the general aviation community, I’d imagine plenty of folks would be surprised how many of these highly modified airplanes are out there and what they do for us on a daily basis.

NOAA operates several special mission aircraft, including this highly modified Gulfstream IV-SP, which flies hurricane and winter storm missions.

NOAA operates several special mission aircraft, including this highly modified Gulfstream IV-SP, which flies hurricane and winter storm missions.

I first became aware of Special Mission aircraft when I was in initial Gulfstream IV training. There were five pilots in my class. Most of us were employed by typical charter or Part 91 operators, but the youngest member of our cadre worked for NOAA, the National Oceanic and Atmospheric Administration. He had been flying the agency’s DeHavilland DHC-6 Twin Otter for a couple of years and was offered a slot flying either the Lockheed P-3 Orion or the Gulfstream IV-SP. He really loved the idea of flying the big turboprop, but the only training available for the Orion was through the military. As I recall, it was a two year long process, whereas training on the G-IV was available through civilian providers and wouldn’t take nearly as much time.

NOAA’s Gulfstream is one of those Special Mission airplanes which benefit everyone. The jet has twice the altitude capability of the P-3 Orion, which allow it to drop instruments known as Omega dropwindsondes into the storm from higher up. The data collected has improved landfall prediction accuracy by more than 20 percent, saving lives and property in the bargain.

This Lockheed-modified G-III is used for ISR missions.

This Lockheed-modified G-III is used for ISR missions.

I’m most familiar with the Gulfstream special mission aircraft because that’s the type I fly. At my home base, I’ve come across a Lockheed-Martin DRAGON, a highly modified Gulfstream III which serves as an ISR (intelligence, surveillance and reconnaissance) platform for military, homeland defense, disaster relief and humanitarian assistance needs. The Israeli air force’s airborne early warning aircraft is a modified G550. It’s so radically altered, in fact, that it’s almost unrecognizable as a Savannah product.

The U.S. government operates a large fleet of Gulfstreams to provide airlift for senior U.S. government officials, members of Congress and military leaders. The current fleet includes the G-IV (military designation C-20) and G-V/550 (C-37) models, which are operated by every branch of the military as well as the U.S. Coast Guard.

One of the most famous Special Mission business jets served our nation’s space program for more than three decades. NASA operated four Gulfstream II jets which were heavily modified to simulate the space shuttle’s descent profile. Officially known as the Shuttle Training Aircraft, the right half of the cockpit was standard bizjet; the left side replicated the orbiter’s flight deck.

The Shuttle Training Aircraft flight deck: half space shuttle, half Gulfstream.

The Shuttle Training Aircraft flight deck: half space shuttle, half Gulfstream.

Shuttle approaches were so steep — 20 degrees! — that the jets had to be operated with the main landing gear down and both Spey engines running in reverse at 92% N2. This YouTube clip shows the STA in action. Aside from a downline or spin in an aerobatic aircraft, I’ve rarely seen an altimeter unwind that quickly.

You’ll find Gulfstreams, Citations, Lears, Hawkers, and many other business jets used for signals intelligence, moving cargo, towing targets, medevac, oceanic patrol, search and rescue, and just about anything else you can think of.

Oh, and that airplane we saw on the ramp in Kona? A bit of internet research reveals that it’s called HIAPER (High-performance Instrumented Airborne Platform for Environmental Research) and is owned by the National Science Foundation. It took more than $81 million and nearly twenty years from conception to delivery. After Gulfstream finished building the airplane, it spent two years undergoing heavy modification and testing at Lockheed before entering service. That’s pretty typical, because adding sensors and pods often requires cutting holes in the pressure vessel, and that means the basic structure has to be re-engineered to ensure adequate safety. You’re taking an aircraft that was designed to do one thing and rebuilding it to accomplish a completely different mission.

The SOFIA airborne observatory.

The SOFIA airborne observatory.

I recently flew with a guy who was the test pilot for the SOFIA airborne observatory. It’s essentially a Boeing 747 retrofitted with a massive telescope in the tail. There’s a lot more to it than just clearing out the passenger seats and sticking some equipment into the fuselage. The cabin has to remain pressurized, but the telescope must be exposed to the open air. A new rear bulkhead had to be fabricated and installed for the pressure vessel, along with an 18-by-13 foot door for the telescope itself which was strong enough to open and close while flying at 41,000 feet and 500 knots. I don’t know much about the telescope, but the work that went into retrofitting the airframe is awfully impressive.

In a world of bespoke aircraft, the Special Mission variants take customization to a whole new level. Next time you see a business jet on the ramp with odd or exotic modifications, take a moment to appreciate the time, effort, money, and engineering that went into what is surely a one-of-a-kind machine.

Those Lousy Checklists

Friday, May 1st, 2015

Ah, the checklist. If Shakespeare was a pilot, he’d have written an ode to it.

Once confined to the world of aviation, formal checklist discipline is now common in hospitals, assembly lines, product design, maintenance, and just about any other instance where loss of essential time, money, or bodily function can result from improper procedures or forgotten items.

Some pilots can’t imagine flying without one. Like a child wandering the yard without their favorite blanket, they’d quite literally be lost without that laminated piece of paper guiding them through each phase of flight. I’ve seen pilots who seemed to enjoy using the checklist more than the actual flying.

Others have a difficult time understanding why a written list is needed at all, especially in simple or familiar aircraft. “Use a flow or mnemonic and let’s get going!”, they’d say. While I disagree with that attitude, I understand where it comes from: too many badly-designed checklists.

As anyone who’s operated a wide variety of aircraft types (I’ve flown over 60) can tell you, poor checklists are more often the rule than the exception, and the worst of them will leave a long-lasting bad taste in your mouth. They disrupt the flow of a flight much the way an actor with poor timing can disrupt a scene.

One of the great aviation mysteries is why so many lousy checklists continue to exist. They’re not limited to small aircraft, either. The manufacturer-provided checklist for the Gulfstream IV, for example, is comically long. I don’t know who designs these things, but I highly doubt it’s the line pilot who’s going to be using it day in and day out.

The answer to such cosmic riddles is far above my pay grade. What I can say for sure is that it’s vital for aviators to understand both the purpose for a checklist and the proper way to use one.

The purpose should be self-evident: to ensure that nothing important gets missed. Lowering the landing gear, setting the pressurization controller, those sorts of items. The key word is important, and I think that’s where many checklists fall apart because once the document gets too long, human nature dictates that pilots will either skip items inadvertently or leave the entire thing stowed.

Proper checklist usage? Now that’s something a bit more complex. When an aviator is new to an aircraft, the checklist serves as a “do” list. In other words, each item is read and then the action is performed. Even if a cockpit flow exists and is being taught, the list will have to be read and performed one step at a time because the pilot is simply unfamiliar with the location of switches and controls.

As time goes by, the flow and/or checklist is slowly memorized. Eventually the pilot reaches the point where they’re actually faster and more comfortable performing the items from memory. There’s absolutely nothing wrong with that. In fact, it’s a good thing, because it allows the checklist to serve as a CHECK list. Once everything is done, you quickly read through the items on the page to ensure you haven’t forgotten anything.

In my experience, it’s not the neophyte who is at greatest risk for missing something, it’s the grizzled veteran who whips through the flows at lightning speed and then neglects to use the checklist at all. It’s overconfidence. They’re so sure they haven’t forgotten anything of life-altering consequence. And to be honest, they’re usually right — but that’s not the point.

I see this kind of failure quite frequently when flying glass panel aircraft with pilots who are computer-centric Type-A personalities. They’re literally too fast with the flows and need to slow down a bit.

Caution is also warranted when circumstances force a pilot to perform tasks out of their normal order. Often this happens due to interruption from ATC, line personnel, passengers, weather, or even another pilot.

Speaking of weather, here’s a case in point: I was in New Jersey getting a jet ready for departure during a strong rainstorm. We had started up the airplane to taxi to a place on the ramp where it was somewhat protected from the weather so our passengers wouldn’t get quite as soaked when they arrived. That simple action broke up the usual preflight exterior flow and as a result I neglected to remove the three landing gear pins. Thankfully the other pilot caught it during his walk-around, but it shows how easily that sort of thing can happen.

The best checklists, the ones that are truly effective, share some common traits. For one thing, they’re short and sweet. They hit the critical items in a logical order and leave the rest out.

In an aerobatic aircraft, a pre-takeoff check would cover the fuel selector, canopy, fuel mixture, flight controls, etc. In a swept-wing business jet, on the other hand, the critical items are different. Flaps become a vital item, because unlike other aircraft, if those aren’t set right the airplane can use far more runway than you’ve got available. It may not even fly at all.

Checklist design and usage is an under-appreciated skill. As with many things in aviation, when it’s done right it’s a thing of elegance. Art, almost. So next time you’re flying, take a critical look at your checklist and the way you use it. How do you — and it — measure up?

Flying Backward

Wednesday, February 11th, 2015

“Aviation in itself is not inherently dangerous. But to an even greater degree than the sea, it is terribly unforgiving of any carelessness, incapacity or neglect.”

Aviation insurance pioneer A. G. Lamplugh uttered that oft-quoted phrase more than eighty years ago, and it’s as valid today as it was back then. Like Newton’s Laws of Physics, it’s one of the basic, unchanging truths about flying: certain things simply must be done properly if we’re to avoid disaster in the air. One of the best examples would be dealing with a low-altitude engine failure.

Last week’s TransAsia ATR-72 accident is a potent reminder of this aphorism. While we don’t know the cause yet and probably won’t know the whole story for a year or more, it got me thinking about how oddly things are done in aviation sometimes. For example, airline pilots move “up” the food chain from turboprops to jets. If safety is the paramount concern, that’s backwards. Shouldn’t the most experienced pilots should be exercising their skills on the most challenging aircraft rather than the least?

While jets certainly have their pitfalls and perils, a low-altitude engine failure is generally more challenging in a turboprop. The dead engine’s propeller creates tremendous drag until it’s properly secured. Many multi-engine turboprops are equipped with mechanisms to automatically feather the offending prop, but if that system doesn’t function properly, has been deferred, or simply doesn’t exist, the pilot is faced with six levers in close proximity, only one of which will do the trick. It’s easy to pull the wrong one.

Worse yet, if the craft has an autofeather system, the pilot would logically expect it to function as advertised. He or she would have to first detect the lack of feathering, then run the identify-verify-feather drill. Unlike training scenarios, there’s a major surprise factor at play as well. In a simulator, is anyone really surprised when the engine quits? Of course not. In the real world, pilots make thousands of flights where a powerplant doesn’t fail. As much as you tell yourself with each takeoff that “this could be the one”, empirical evidence in the form of a pilot’s own experience suggests against it. That makes preparation for a low-altitude emergency a constant battle with oneself. Are we always honest about how we’re doing in that fight? Probably not.

When I flew ex-military U-21A turboprops for a government contractor, we did all our training in the actual aircraft. I’ll never forget how marginal the aircraft’s performance was, even when engine failures were handled properly and expediently. We would fly a single-engine approach into Catalina Airport, where the missed approach procedure takes you toward the center of the island and some fairly high terrain. On one training flight the autofeather system initially worked as advertised, but then started to slowly unfeather.

Turboprop flying also comes with increased risk exposure due to the flight profile. A jet pilot might fly one or two legs a day versus five, six, or seven flown by the guy in the turboprop. With more legs comes an increased statistical opportunity for that engine to quit on takeoff. Turboprops also fly at lower altitudes where they tend to be in weather rather than above it.

The reciprocating twin pilot has it even worse when it comes to performance. Most of them have no guarantee of any climb performance at all on one engine, especially with the gear down, and few are equipped with automatic feathering systems. Yet that’s where we all start out.

Contrast this with engine failure in the modern jet, where the pilot need do nothing but raise the landing gear and keep the nose straight. In my aircraft, at least, we don’t even add power on the remaining engine. Unless the plane is literally on fire, we just climb straight out for a minute or two, gaining altitude and doing… nothing. No checklist to run, and only two levers in the throttle quadrant rather than six.

John Deakin described the contrast between prop and jet quite colorfully when he transitioned into the G-IV:

“If you hear a Gulfstream pilot whine about poor performance when high, hot, and heavy, please understand, he’s whining about less than 1,000 feet per minute on one engine. I sometimes feel like slapping a chokehold on, and dragging one of these guys out to the old C-46, loaded, on a hot day, and make him do an engine failure on takeoff, where he’d be lucky to get 50 feet per minute.”

There are other places where you can see this same phenomenon at work in aviation. Consider the world of flight instruction. The least experienced CFIs typically start off by teaching primary students. Again, that’s backwards. It would seem more logical to start instructors off with checkouts and endorsements for experienced pilots or commercial certificate training. Putting the best, most experienced CFIs with the neophytes might help accelerate their progress and alleviate the high student pilot drop-out rate.

The Law of Primacy — something every CFI candidate learns about — tells us that “the state of being first, often creates a strong, almost unshakable, impression. Things learned first create a strong impression in the mind that is difficult to erase. For the instructor, this means that what is taught must be right the first time.” Primary flight training literally sets the foundation of an aviator’s flying life, to say nothing of the fact that teaching primary students is one of the most difficult jobs a CFI can undertake. So why is this critical task mainly entrusted to the newest, least experienced instructors?

The answer to these questions usually comes down to money. The almighty dollar frequently plays a powerful role in explaining the unexplainable in aviation. While it would be unrealistic to deny the importance of financial concerns in defying gravity, whole sections of the aviation ecosystem run backwards and one can’t help but wonder if perhaps safety suffers because of it.

Who’s the Best Pilot?

Monday, December 22nd, 2014

One of the many iconic scenes (so much so that it recurs several times in the film) from The Right Stuff has astronaut Gordon Cooper asking his wife, “Who’s the best pilot you ever saw?” before answering his own question: “You’re lookin’ at him!” Gordo was telling a joke, of course, but it got me thinking about what constitutes a great pilot in the real world.

Accident statistics show that when light GA pilots try to operate on a firmly fixed schedule — for example, around the holidays — the risk level increases. AOPA recently published an Air Safety Alert to that effect, noting “a cluster of GA accidents occurring in close succession.”

Some of this probably has to do with the fact that the holiday season occurs in the winter for those of us living in the northern hemisphere. While the hot months have their own set of challenges, they tend to consist of things which present equal hazard to all aircraft: thunderstorms, high density altitude, etc. But whereas large multi-engine turbojets are well-equipped for cold weather flying, single-engine recips typically operate with minimal anti- and de-icing equipment, if any.

Anyway, it occurs to me that this kind of flying is exactly what we do in the Part 135 world. We operate on someone else’s timetable, and rarely is that schedule created with weather, circadian rhythm, airport staffing hours, or other such operational concerns in mind. As you might expect, the 135 safety record — while far better than Part 91 — does not reach the rarefied heights of the scheduled airlines. Some people feel it should. There are plenty of folks who feel Part 91 should reach that strata as well.

I tend to disagree.

Part 135 has the flexibility to operate at random times and into a far wider variety of places than scheduled airlines. While we do everything possible to make the flights as safe as humanly possible, flexibility cannot help but exact a price. Flying worldwide charter, I don’t know if my next trip will take me to Liberia or Las Vegas. I have to be prepared to go anywhere.

If that sounds incredible, then light general aviation flying should really blow your mind! The non-commercial Part 91 aviating so many of us do for personal reasons takes that freedom and ramps it up a hundred fold. Not only can you go anywhere you want at any time it suits you, you can do it at night, in IMC, in formation, and fly some aerobatics or sight-see along the way. You can fly a weird experimental airplane that you built in your garage. You can tow banners. Drop things from your airplane, then cut them up as they fall to earth? Yes, that’s fine. Fly high… or low. You can change your destination in mid-flight without asking anyone’s permission.

Heck, you can even take off with no destination whatsoever; those are some of my most cherished flights. When I call the VFR clearance delivery frequency at John Wayne Airport and they ask where I’m headed, nothing says freedom quite like using William Shatner’s response from the first Star Trek film: “Out there. That-a-way!”

Wrapping your mind around having the liberty to do those things while not being able to install a radio in your panel without approval from a certification office somewhere in Oklahoma City could cause a migraine… but let’s leave that for another day.

The point is, with added freedom comes added risk. And responsibility. It’s ironic that we think of airline pilots as having the greatest weight on their shoulders when rules, procedures, and operational specifications dictate almost everything they do. I’m not saying their job is easy. It ain’t. But if you’re not in awe of the authority and self-determination placed on your own shoulders every time you launch, think about this: we could have the safety record of the major airlines. All we’d need are the same rules and requirements for flight that they use. Seems to me that would be an awful lot like asking Santa for a big, dirty lump of coal in your stocking.

If there’s a way to have the freedom to land on five hundred foot long strips on the side of a mountain, tackle water runways, engage in flight training, and — most of all — fly to that family Christmas in an airplane with just one reciprocating engine without significantly higher risk than you’ll find on a typical airliner, I’d be quite surprised. But one thing every pilot has in common is that risk management is a major part of the job.

So as you contemplate that cross-country flight to celebrate the holidays with your loved ones, remember that the best pilot isn’t the one who finds the cheapest fuel, stuffs the most presents into the baggage compartment, or makes the softest landing. It’s the one who best manages the risk inherent in that flight.

Right, Gordo?