Posts Tagged ‘general aviation’

Two Mooneys, Eight Paws, Three Pilots and Love

Wednesday, May 6th, 2015

Two Mooneys, Eight Paws, Three Pilots and Love

Three Mooneys Ready to Go

Three Mooneys Ready to Go

A few weeks ago, I was able to fly my first Pilots N Paws [PNP] mission. The day was a testament to what our General Aviation airplanes can accomplish to give back in service as well as install a permanent smile on our faces.

Gary, the Rescue Pup

Gary, the Rescue Pup

The mission was to help Gary, the twelve-pound Shih Tzu get from the temporary shelter in Long Beach to the San Francisco Bay Area. If you were driving that route, it would take eight and a half hours. But luckily for Gary it was #FlyFast Saturday. His total flight time was under two hours.

The first leg was flown by veteran PNP Mooney pilot, John Baker in his 1993 Bravo. John has flown over 100 dogs and cats on their “freedom flights.” His enthusiasm and zeal for the charity flights for dogs and cats is quite contagious.

Mooney 1, John Baker

Mooney 1, John Baker

After John landed we agreed to meet outside Art Craft Paint. We completed some paperwork and unloaded Gary.

My co-pilot for the day is a great friend, fellow pilot and Mooney Girl, Cat. I thought it was very appropriate that Cat was helping us with the dogs.

Cat and Jolie en route

Cat and Jolie en route

 

 

My four-legged Ambassador was Mooney Lucas Aviation Puppy who is in training to become a therapy dog. Mooney and Gary had a great time getting to know each other while John briefed me on the procedure for the receiving party.

We took a bunch of photos, loaded Mooney-dog in the back seat, got Gary in his crate in the back and departed Santa Maria airport for Livermore. Gary did a super job in flight, he only cried a little bit. One hour and twenty minutes later we touched down in Livermore.

Happy pilots and doggy

Happy pilots and doggy

I cannot begin to express what the flight did for ME. I had so much fun seeing John again, albeit for a brief time. Cat and I jib jabbed all the way up and back. She flies a cute little C152. She could not get over the 150kts over the ground on the way up and 160 kts. on the way home. The satisfaction of bringing Gary to his forever home was wonderful.

I want to encourage my fellow Mooniacs  and all pilots to use their aircraft in service to others. We have these beautiful airplanes. Let’s use them to make our world a better place. I am still grinning about Gary, a fun name for a dog. Then again, mine is named Mooney!

 

Champion Aerospace: From Denial to Acceptance

Thursday, March 19th, 2015

Champion Aviation Spark PlugsAccording to the model popularized by Dr. Elisabeth Kübler-Ross in her seminal 1969 book On Death & Dying, there are five stages of grief: denial, anger, bargaining, depression, and acceptance. This is apparently what Champion Aerospace LLC has been going through over the past six years with respect to the widely reported problems with the suppression resistors in its Champion-brand aviation spark plugs. I last discussed this issue in my August 2014 blog post Life on the Trailing Edge.

I first became aware of the Champion spark plug resistor problem in 2010, although there’s evidence that it dates back to 2008. We were seeing numerous cases of Champion spark plugs that were causing bad mag drops, rough running and hard starting even though they looked fine and their electrodes weren’t worn anywhere near the retirement threshold. The thing these spark plugs had in common were that they were all Champion-brand plugs and they all measured very high resistance or even open-circuit when tested with an ohmmeter.

We also saw a number of cases where high-resistance Champion plugs caused serious internal arc-over damage to Slick magnetos (mostly in Cirrus SR20s). If the damaged mag was replaced without replacing the spark plug, the new mag would be damaged in short order. The cause-and-effect relationship was pretty obvious.

In researching this issue, I looked at the magneto troubleshooting guide on the Aircraft Magneto Service website, maintained by mag guru Cliff Orcutt who knows more about aircraft ignition systems than just about anyone I know. Cliff owns and operates my favorite mag specialty shop, and that’s where I send the mags on my own airplane every 500 hours for inspection and tune-up. In reading Cliff’s troubleshooting guide, I came across the following pearls of wisdom:

  • Take an OHM Meter and measure the resistance value from the connection in the bottom of the barrel to the clean center electrode at the firing end, electrode must be bare metal.
  • A new Champion plug will have a value of 800 to 1200 OHMS. New Tempest (formerly Unison-Autolite) will measure 1000 OHMS.  Replace any plug above 5000 OHMS.
  • A spark plug bomb tester can test a bad plug and lead you to conclude it is serviceable. The OHM Meter check is simple, readily available, and amazingly accurate in finding misfiring plugs.

We started asking the maintenance shops we hired to maintain our clients’ aircraft to ohm out the plugs at each 50-hour spark plug maintenance cycle. The number of plugs that measured over 5,000 ohms was eye-opening. Many plugs measured tens or hundreds of thousand ohms, and it wasn’t unusual to find plugs that measured in the megohm range or even totally open-circuit. Here, for example, is a set of 12 Champion plugs removed for cleaning and gapping from a Cirrus SR22 by a shop in South Florida:

Champion spark plug resistance

Notice that only two of these 12 plugs measured less than 5K ohms, and one of those had to be rejected because its nose core insulator was cracked (a separate issue affecting only Champion fine-wire spark plugs, and unrelated to the resistor issue that affected all Champion plugs).

Why spark plugs have resistors

Worn spark plug

A worn-out spark plug.

Early aviation spark plugs didn’t contain resistors. They didn’t last long, either. The reason was that each time the plug fired, a significant quantity of metal was eroded from the electrodes. Magnetos fire alternate spark lugs with alternate polarities, so half of the plugs suffered accelerated erosion of their center electrodes, and the other half suffered erosion of the ground electrodes. Eventually, the ground electrodes became so thin or the center electrode became so elliptical that the plug had to be retired from service.

Spark plug manufacturers found that they could extend the useful life of their plugs by adding an internal resistor to limit the current of the spark that jumps across the electrodes. The higher the resistance, the lower the current. And the lower the current, the less metal eroded from the electrodes and the longer the plug would last before the electrodes got so worn that the plug had to be retired.

Adding a resistor to the plug also raised the minimum firing voltage for a given electrode gap. The result is a hotter, more well-defined spark that improves ignition consistency and reduces cycle-to-cycle variation.

The value of the resistor was fairly critical. If the resistance was too high, the plug would fire weakly, resulting in engine roughness, hard starting, excessive mag drops, and (if the resistance was high enough) arc-over damage to the magneto and/or harness. If the resistance was too low, the plug electrodes would erode at an excessive rate and its useful life would be short. Experimentation showed that a resistance between 1K and 4K ohms turned out to be a good compromise between ignition performance and electrode longevity. Brand new Champion-brand aviation spark plugs typically measure around 1,200 ohms fresh out of the box. New Tempest-brand plugs typically measure about 2,500 ohms. Both of these represent good resistance values right in the sweet spot.

Denial

As word of these erratic and wildly out-of-spec resistance values began reaching aircraft owners and mechanics (primarily via the Internet), Champion went on the defensive. At numerous aviation events and IA renewal seminars, Champion reps dismissed the significance of resistance measurements. They explained that the silicon carbide resistor in Champion-brand plugs is made to show the proper resistance whenever a high-voltage pulse is present, and can’t necessarily be measured properly with an ohmmeter. Further, they stated that the proper way to test a spark plug is on a spark plug testing machine (so-called “bomb tester”), and claimed that if a plug functions well during a bomb test, it should function well in the airplane.

Champion old insulator assembly

Champion old insulator assembly.

Of course, this “company line” from Champion didn’t agree with our experience. We’d seen numerous instances of high-resistance Champion plugs that tested fine on the bomb tester but functioned erratically in service. Nor did it agree with the Mil Spec for aviation spark plugs (MIL-S-7886B) which states clearly:

4.7.2 Resistor. Each spark plug shall be checked for stability of internal resistance and contact by measurement of the center wire resistance by the use of a low voltage ohmmeter (8 volts or less). Center wire resistance values of any resistor type spark plug shall be as specified in the manufacturer’s drawings or specifications. 

One enterprising Cessna 421 owner named Max Nerheim performed high-voltage testing of Champion spark plugs, and found that plugs that measure high-resistance or open-circuit with a conventional ohmmeter also had excessive voltage drop when fired with high voltage, and required a higher minimum voltage to produce any spark. Max Nerheim wasn’t just an aircraft owner, mind you, he was also Vice President of Research for TASER International, Inc. and was exceptionally qualified to perform high-voltage testing of Champion spark plugs. Nerheim’s findings flatly contradicted Champion’s company line, and agreed with what we were seeing in the field. Nerheim also disassembled the resistor assemblies of a number of high-resistance Champion plugs and found that the internal resistor “slugs” were failing.

Anger

What's your resistance?The spit really hit the fan when Champion’s primary competitor in the aviation spark plug space, Aero Accessories, Inc., launched a marketing campaign to promote sales of its Tempest-brand aviation spark plugs by highlighting the resistance issue. (Aero Accessories acquired the Autolite line of aviation spark plugs from Unison Industries in 2010, an re-branded them under its Tempest brand.) In February 2013, they issued a Tempest Tech Tip titled “The Right Way to Check Spark Plug Resistors,” started selling a fancy spark plug resistance tester, and launched a big “What’s Your Resistance” advertising campaign in the general aviation print media.

Predictably, this provoked a rather hostile response from Champion. Their field reps ratcheted up their public relations campaign claiming that the ohmeter check was meaningless, and insisting that Champion spark plugs didn’t have a resistance problem that affected the performance of their plugs.

Bargaining

In the face of both overwhelming technical evidence from the field that their spark plugs had a resistor problem, and a virtual blitzkrieg from their principal competitor that was starting to erode their dominant market share, Champion began having some self-doubts. Max Nerheim discussed his high-voltage test findings with Kevin Gallagher, Manger of Piston and Airframe at Champion Aerospace, and Gallagher acknowledged that Champion was looking into the issue with the resistor increasing in impedance, but did not have it resolved yet. Meanwhile, the Champion field reps continued to insist to anyone who would listen that claims of resistor problems in Champion spark plugs were false and that the ohmmeter test was meaningless.

Finally…Acceptance

Sometime in late 2014, it appears that Champion very quietly changed the internal design of their spark plugs to use a sealed, fired-in resistor element that appears to be quite similar to the design of the Tempest/Autolite plug. They didn’t change any part numbers. So far as I have been able to tell, they didn’t even issue a press release. The Champion Aerospace website makes no mention of any recent design changes or product improvements. But the cutaway diagram of the Champion spark plug now on the website shows the new fired-in resistor. Here are the old and new cutaway diagrams. Compare them and you’l clearly see the difference.

Click on images below to see higher-resolution versions.

Champion spark plug cutaway (old)

Champion spark plug cutaway (old)

Champion spark plug cutaway (new)

Champion spark plug cutaway (new)

I checked with a number of A&P mechanics and they verified that the latest Champion spark plugs they ordered do indeed have the new design. It’s easy to tell whether a given Champion spark plug is of the old or new variety. Simply look at the metal contact located at the bottom of the “cigarette well” on the harness end of the plug. The older-design plugs have a straight screwdriver slot machined into the metal contact, while the newer-design plugs do not.

As I write this, it’s still too early to tell whether Champion’s quiet resistor redesign will cure the drifting resistance problem, but my best guess is that it will. If I’m right, this is very good news indeed for users of Champion aviation spark plugs. I applaud Champion Aerospace for improving its product.

Still, I can’t help but wonder why it took six years for the company to work through its grief from denial to acceptance. I suppose grief is a very personal thing, and everyone deals with it differently.

Think outside the traffic pattern: If you build it, they will come!

Sunday, March 8th, 2015

Find ways to make your home ‘drome unique and reap the dual benefits of increased activity & fun.

Santa Rosa-Route 66 Airport [KSXU], NM  A Ride from Police  Flying home from AirVenture last year on flight following with Albuquerque Center when the controller asked me if my destination was Santa Rosa-Route 66 airport [KSXU]. I said, “Affirmative KSXU.”  He then said, “If you are in need of a courtesy car make sure to check the bulletin board in the FBO for instructions.”I thanked him for the information, although I thought it was a little odd for ATC to offer suggestions on ground transportation. Landing about 3:30 p.m. after a long flight, I was a little dismayed not to see a car outside the FBO.

Getting a ride and a little history of Santa Rosa-Route 66

Getting a ride and a little history of Santa Rosa-Route 66

Santa Rosa airport is about 4 miles out of town and the idea of walking in to town wasn’t so appealing.  There were a few other planes on the ramp and a small concrete block FBO building. When I went inside and took a look at the bulletin board I was surprised to see a sign that said to call the Santa Rosa Police Department for a ride in to town. Even though I was a little nervous about it, I called the number on the sign and told the dispatcher that I was at the airport and needed a ride.  “We will send a cruiser out for you in a moment.”  she said.

Sure enough, in about five minutes up rolled a police cruiser and driven by a very nice young officer.  He helped load up the bags and I got in the back of the car.  A little caveat that I have never been in the back of a police car.  The funniest part was when I tried to open the car door to get out when he stopped at the hotel.

Here are some more examples of bringing some fun to the airport, which in turn brings visitors and economic gain.

Pecos, Texas [KPEQ] Homemade Burritos for All  The FBO managers of Pecos Texas offer their visitors homemade burritos, chips and salsa.  This airport gets a fair share of military and business customers.  Texas hospitality and the yummy food entices folks to stop, stay and buy fuel.

Beaumont, KS [07S]  Taxi Plane to Town  This $100 Hamburger stop  in southern Kansas allows you to land and taxi in to town. The runway of prairie grasses about a quarter mile east of “town” such as it is north-south orientation, about 2,600 feet long, sloping downhill from north to south.

Twin Beech taxi to town, Beaumont KS.

Twin Beech taxi to town, Beaumont KS.

You land, taxi off the south end of the runway and turn west onto 118th street , taxi west, uphill, to a three-way stop at the intersection adjacent to the jerkwater tower, across the intersection and south to the aircraft-only parking…walk north across the street and you’re there….they have a monthly fly-in breakfast, a monthly ride-in breakfast (for the motorcycle crowd), and other events through warmer months.

Priest Lake Idaho [67S]  Donuts and Coffee for Campers  Located near breathtaking Cavanaugh Bay is Priest Lake airport which has a grass strip and camping. There is a courtesy golf cart to help unload the plane and transport gear to camp site.  Each morning the caretaker brings fresh coffee and donuts out to campers .

Burning Man

Burning Man

IMG_20140823_112911

Black Rock City

Black Rock City Airport [88NV] Burning Man  In 2009 Black Rock City Airport was recognized by the FAA as a private airport and designated 88NV. With all volunteer labor, once a year a portion of playa of the desert is transformed into an airport. Fly-In guests get to land on an airport that only exists one week per year.

Alton Bay on Lake Winnipesaukee, New Hampshire [B18]  Only FAA Ice Runway in lower 48 Since the 1960s airplanes have flocked to the “ice airport”. If you are actually the PIC and land at the airport, you are eligible to purchase a commemorative hat.  According to one pilot who landed there, they are strict about the one hat per pilot rule and keep a log. 

Land on ice, get a hat

Land on ice, get a hat

We can all do a little something to make our airports attractive to guests.  The fun-factor the airports I have listed above helps increase good-will and numbers of visitors. Check out the comment section on AirNav and you will see that pilots like to leave feedback and tips for other pilots.   What can you do at your home airport?  Or better yet, what has your airport done already?  Please use the comments section below to add the unique service, attraction or treat that your airport offers.   I think that pilots are inherently kids at heart.  Let’s get the movement rolling here.  Be unique, think outside the traffic pattern. If you build it, they will come.

 

 

 

 

 

Owner in command

Tuesday, February 17th, 2015

Every pilot understands the notion of “pilot in command.” That’s because we all had some certificated flight instructor (CFI) who mercilessly pounded this essential concept into our heads throughout our pilot training. Hopefully, it stuck.

As pilot-in-command (PIC), we are directly responsible for, and the final authority as to, the operation of our aircraft and the safety of our flight. Our command authority so absolute that in the event of an in-flight emergency, the FAA authorizes the PIC to deviate from any rule or regulation to the extent necessary to deal with that emergency. (14 CFR §91.3)

In four and a half decades of flying, I’ve overheard quite a few pilots dealing with in-flight emergencies, and have dealt with a few myself. It makes me proud to hear a fellow pilot who takes command of the situation and deals with the emergency decisively. Such decisiveness is “the right stuff” of which PICs are made, and what sets us apart from non-pilots.

Conversely, it invariably saddens me to hear a frightened pilot abdicate his PIC authority by throwing himself on the mercy of some faceless air traffic controller or flight service specialist to bail him out of trouble. How pathetic! The ATC or FSS folks often perform heroically in such “saves,” but few of them are pilots, and most have little or no knowledge of the capabilities of the emergency aircraft or its crewmember(s). They shouldn’t be placed in the awful position of having to make life-or-death decisions on how best to cope with an in-flight emergency. That’s the PIC’s job.

Fortunately, most of us who fly as PIC understand this because we had good CFIs who taught us well. When the spit hits the fan, we take command almost instinctively.

Owner in command

When a pilot progresses to the point of becoming an aircraft owner, he suddenly takes on a great deal of additional responsibility and authority for which his pilot training most likely did not prepare him. Specifically, he becomes primarily responsible for maintaining his aircraft in airworthy condition, including compliance with all applicable airworthiness requirements including Airworthiness Directives. (14 CFR §91.403) Unfortunately, few owners have the benefit of a Certificated Ownership Instructor (COI) to teach them about their daunting new responsibilities and authority as “owner in command” (OIC).

Consequently, too many aircraft owners fail to comprehend or appreciate fully their weighty and complex OIC responsibilities. They put their aircraft in the shop, hand over their keys and credit card, and tell the mechanic to call them when the work is done and the airplane is ready to fly. Often, owners give the mechanic carte blanche to “do whatever it takes to make the aircraft safe,” and don’t even know what work is being performed or what parts are being replaced until after-the-fact when they receive a maintenance invoice.

In short, lots of owners seem to act as if the mechanic is responsible for maintaining the aircraft in airworthy condition. But that’s bass-ackwards. In the eyes of the FAA and under the FARs, it’s the owner who is responsible. The mechanic is essentially “hired help”—a skilled and licensed contractor hired to assist the owner carry out his regulatory responsibilities.

General Contractor

An aircraft owner-in-command acts as the “general contractor” for the maintenance of his aircraft.

I find it helpful to compare the proper role of the aircraft owner in maintaining an airworthy aircraft to that of a general contractor in building a house. The general contractor needs to hire licensed specialists—electricians, plumbers, roofers, masons, and other skilled tradesmen—to perform various tasks required during the construction. He also needs to hire a licensed building inspector to inspect and approve the work that the tradesman have performed. But, the general contractor makes the major decisions, calls the shots, keeps things within schedule and budget constraints, and is held primarily accountable for the final outcome.

Similarly, an aircraft owner hires certificated airframe and powerplant (A&P) mechanics to perform maintenance, repairs and alterations; certificated inspectors (IAs) to perform annual inspections, and other certificated specialists (e.g., avionics, instrument, propeller and engine repair stations) to perform various specialized maintenance tasks. But, the owner is the boss, is responsible for hiring, firing, and managing these various “subcontractors,” and has primary responsibility for the ensuring the desired outcome: a safe, reliable aircraft that meets all applicable airworthiness requirements, achieved within an acceptable maintenance budget and schedule.

Who’s the boss?

The essence of the owner-in-command concept is that the aircraft owner needs to remain in control of the maintenance of his aircraft, just as the pilot needs to remain in control of the operation of the aircraft in-flight. When it comes to maintenance, the owner is supposed to be the head honcho, make the major decisions, ride herd on time and budget constraints, and generally call the shots. The mechanics and inspectors and repair stations he hires are “subcontractors” with special skills, training and certificates required to do the actual work. But the owner must always stay firmly in charge, because the buck stops with him (literally).

Since most owners have not received training in how to act as OIC, many of them are overwhelmed by the thought of taking command of the maintenance of their aircraft. “I don’t know anything about aircraft maintenance,” they sigh. “That’s way outside my comfort zone. Besides, isn’t that my mechanic’s job?”

Such owners often adopt the attitude that it’s their job to fly the aircraft and the mechanic’s job to maintain it. They leave the maintenance decisions up to the mechanics, and then get frustrated and angry when squawks don’t get fixed and maintenance expenses are higher than they expected.

But think about it: If you were building a house and you told your plumber or electrician or roofer “just do whatever it takes and send me the bill when it’s done,” do you think you’d be happy with the result?

No one in his right mind would do that, of course. If you were hiring an electrician to wire your house, you’d probably start by giving him a detailed list of exactly what you want him to do—what appliances and lighting fixtures you want installed in each room, where you want to locate switches, dimmers, convenience outlets, thermostats, telephone jacks, Ethernet connections, and so forth. You’d then expect the electrician to come back to you with a detailed written proposal, cost estimate, and completion schedule. After going over the proposal in detail with the electrician and making any necessary revisions, you’d sign the document and thereby enter into a binding agreement with the electrician for specific goods and services to be provided at a specific price and delivery date.

You’d do the same with the carpenter, roofer, drywall guy, paving contractor, and so forth.

Cars vs. airplanes

If you’ll permit me to mix my metaphors, when I take my car to the shop for service, the shop manager starts by interviewing me and taking notes on exactly what I want done—he asks me to describe any squawks I have to report, and he checks the odometer and explains any recommended preventive maintenance. Once we arrive at a meeting of the minds about what work needs to be done, the shop manager writes up a detailed work order with a specific cost estimate, and asks me to sign it and keep a copy. In essence, I now have a written contract with the shop for specific work to be done at a specific price.

The service manager doesn’t do this solely out of the goodness of his heart. He’s compelled to do so. In California where I live, state law provides that the auto repair shop is required to provide me with a written estimate in advance of doing any work, and may not exceed the agreed-to cost estimate by more than 10% unless I explicitly agree to the increase. If the shop doesn’t follow these rules, I can file a complaint with the State Bureau of Automotive Repairs and they’ll investigate and take appropriate action against the shop. Most states have similar laws.

Discrepancy List & Repair Estimate

Aircraft owners should insist on receiving a detailed written work statement and cost estimate like this one before authorizing any mechanic or shop to perform repairs or install replacement parts.

Unfortunately, there are no such laws requiring aircraft maintenance shops to deal with their customers on such a formalized and businesslike basis, even though the amounts involved are usually many times larger. Aircraft owners routinely turn their airplanes over to a mechanic or shop with no detailed understanding of what work will be done, what replacement parts will be installed, and what it’s all going to cost. All too often, the aircraft owner only finds this out when he picks up the aircraft and is presented with an invoice (at which point it’s way too late for him to influence the outcome).

It always amazes me to see aircraft owners do this. These are intelligent people, usually successful in business (which is what allows them to afford an airplane), who would never consider making any other sort of purchase of goods or services without first knowing exactly what they were buying and what it costs. Yet they routinely authorize aircraft maintenance without knowing either.

Often, the result is sticker shock and hard feelings between the owner and the shop. There’s no State Bureau of Aircraft Repair to protect aircraft owners from excessive charges or shoddy work. The FAA almost never gets involved in such commercial disputes. A few owners even wind up suing the maintenance shop, but generally the only beneficiaries of such litigation are the lawyers.

You can’t un-break an egg. You’ve got to prevent it from breaking in the first place.

Trust but verify

I hear from lots of these disgruntled aircraft owners who are angry at some mechanic or shop. When I ask why they didn’t insist on receiving a detailed work statement and cost estimate before authorizing the shop to work on their aircraft, I often receive a deer-in-the-headlights look, followed by some mumbling to the effect that “I’ve never had a problem with them before” or “you’ve got to be able to trust your A&P, don’t you?”

Sure you do…and you’ve got to be able to trust your electrician, plumber and auto mechanic, too. But that’s no excuse for not dealing with them on a businesslike basis. Purchasing aircraft maintenance services is a big-ticket business transaction, and should be dealt with as you would deal with any other big-ticket business transaction. The buyer and seller must have a clear mutual understanding of exactly what is being purchased and what it will cost, and that understanding must be reduced to writing.

In the final analysis, the most important factor that sets a maintenance-savvy aircraft owner apart from the rest of the pack is his attitude about maintenance. Savvy owners understand that they have primary responsibility for the maintenance of their aircraft, and that A&Ps, IAs and repair stations are contractors that they must manage. They deal with these maintenance professionals as they would deal with other contractors in other business dealings. They insist on having a written work statement and cost estimate before authorizing work to proceed. Then, like any good manager, they keep in close communication with the folks they’ve hired to make sure things are going as planned.

If your mechanic or shop resists working with you on such a businesslike basis, you probably need to take your business elsewhere.

Wings and Wheels: Encouraging visitors to be guests in our communities

Sunday, February 8th, 2015

We fly for pleasure, business, recreation and charitable purposes. Wouldn’t it be nice if after the wings are done flying we had some wheels to get us to a nice restaurant for lunch, or to our hotel or nearby scenic attraction? My hope is that after reading my little blog a couple dozen of you might add to the list of airports that have bicycles available for pilots flying in.

Oceano Airport Fly 'n Ride

Oceano Airport Fly ‘n Ride

At L52 Oceano Airport in California we are, to the best of my knowledge one of the closest public airports to the Pacific Ocean. Long ago bikes were available for guests. They were painted orange and said “Oceano Airport.” They were leaned up against the fence and folks would take them and ride to Pismo Beach for some clam chowder or a walk on the pier. I was told that if any of the bikes were found in town abandoned, someone would throw them in a truck and bring them back to the airport. Fast-forward to 2010. Friends of Oceano Airport in conjunction with an airport-based business Empirical Systems Aerospace brought back the Fly ‘n Ride, only this time contained in a Rubbermaid shed that is locked to keep children from accessing without parent supervision. The bikes have combination locks, and there are helmets and a tire pump in the shed.

Fun Wheels for the Beach

Fun Wheels for the Beach

Our Fly ‘n Ride works on a donation basis. Folks are pretty generous, dropping a few bucks in the bucket, which allows us to buy tubes and tires as needed. We have a liability waiver that we ask folks to sign. I distinctly remember the conversation with the risk management lawyer of San Luis Obispo County. Initially she wanted us to insure the bikes, in case someone was injured or even died. I asked her, “If your friend loaned you a bike and you fell off and broke your ankle, would you sue your friend?”  “Yes” she said and I replied, “Then you do not understand the culture of General Aviation and G.A. Airports. When we fly to some airports and you need a ride into town someone will throw you keys to the courtesy car, with no questions asked.” We compromised with the waiver. It basically says if you fall down, you are in charge of getting your own Bactine.

Our local University and Sheriffs department collect hundreds of bicycles every year that are abandoned, recovered or impounded. Initially we applied for several of those bikes, which were free. For our purposes however a multi-gear bike with hand brakes was way too much maintenance for a beach-side airport. Now we have three or four beach cruisers for our airport guests. Yes, I call them guests. I think we should all treat folks who fly into our airports as guests. Make them feel welcome, speak to them, offer a ride to town. Better yet, why not set up a Fly ’n Ride at your home airport. It really doesn’t cost much, and it will increase not only traffic to your local businesses but will increase your airport’s goodwill factor. Below is a table of the airports that I know about around the country that have bikes available. If your airport has them and is not on the list, please take a moment to put the details including identifier, name/state and any notes in the comments section.

Airports with Bikes

Airports with Bikes

I grew up in the right or back seat of a Bellanca then a Mooney. While the bikes wouldn’t have worked for a family of four necessarily it would have been something fun to do while waiting for my Dad to do the pre-flight or fuel up. We can all do something at our airports to make it more welcoming to our guests. If you come into L52 Oceano California, make sure to grab a bike head left out of the airport and make your first left on Pier, a few blocks down is one of the prettiest beaches in the world, our little slice of paradise.

Fly HighThis blog is dedicated to the memory of my father, James Lucas who flew West this week. Godspeed and tailwinds, Dad.

 

Thinking, Fast and Slow

Wednesday, January 21st, 2015

Not long ago, I had a fascinating exchange with my friend and colleague Paul New. Paul is an A&P/IA and a truly extraordinary aircraft mechanic who was honored by the FAA as the National Aviation Maintenance Technician of the Year in 2007 (the year before I was so honored). But that’s where the historical similarity between me and Paul ends.

Paul New A&P/IA

Paul New, A&P/IA, owner of Tennessee Aircraft Services
and a truly extraordinary aircraft mechanic.

While I came to aircraft maintenance rather late in life, Paul has been immersed in it since childhood, helping his A&P/IA dad with numerous aircraft restoration projects well before he was tall enough to see over the glareshield without sitting on a phone book.

In 1981, Paul earned his degree in Avionics Technology from Southern Illinois University, and spent five years managing avionics shops for a commuter airline and an FBO. In 1986, he returned to Jackson, Tenn. to work with his dad in the aircraft restoration business once again, and in 1989 he purchased Tennessee Aircraft Services, Inc. from his dad and developed it into one of the premier Cessna Service Centers in the southeast US, performing both general maintenance and major structural repairs.

Over the years, Paul and I have formed an informal mutual admiration society, and frequently bounce problems, thoughts and ideas off one another. That’s exactly what was happening when we got into the conversation I’d like to share with you.

Cessna P210 engine problem

Paul emailed me about one of his customers who had recently encountered an engine problem shortly after takeoff on a recurrent training flight (with a CFI in the right seat). The owner/pilot told Paul that at about 400’ AGL, he noted a serious overboost, five inches over MAP red-line, and throttled back to bring the MAP back to red-line. At that point, according to the pilot, the engine started running very rough. The pilot elected to put the airplane down on the crossing runway, landed long and hot with a 17-knot tailwind, and took out the chain link fence at the far end of the runway. Paul was on his way to the scene of the incident to ferry the aircraft back to his shop for repairs.

Upon hearing his customer’s tale of woe, Paul’s first thought was that the pilot may have turned on the electric boost pump for takeoff, something you’re not supposed to do in the P210. According to Paul, “Leaving on the boost pump is a common mistake in Cessna 210s, particularly with pilots who are used to flying Lycoming-powered airplanes where turning on the boost pump for takeoff is SOP.”

Show me the data!

Paul arranged for his customer to dump the data from the P210’s JPI EDM-830 digital engine monitor data and to upload it to the SavvyAnalysis.com website. Paul asked whether I’d be willing to take a look at it and give him my impressions, and I told him I’d be happy to do that.

P210 Engine Monitor Data

The engine monitor data told a different story than the pilot did.
Which would you believe?

When I looked at the engine monitor data, it seemed to tell a very different story than the one that the pilot had related Paul. I couldn’t see any evidence that the pilot flooded the engine by using the electric boost pump; the fuel flow data looked normal. Nor could I see any evidence that the pilot throttled back the engine (as he told Paul he’d done), because throttling back would have reduced fuel flow and the engine monitor recorded no reduction in fuel flow. What the data indicated was simply that the wastegate stuck closed on takeoff (causing the overboost) and then subsequently unstuck, reducing MAP to what it was supposed to be without any pilot input.

I also observed that while five of the six CHTs were rising as expected after takeoff power was applied, the CHT for cylinder #3 was falling, suggesting that cylinder #3 wasn’t making full power. If one cylinder wasn’t making full power, that would certainly account for the engine running rough. My diagnosis was that something went wrong with cylinder #3 after takeoff—maybe a clogged fuel nozzle, maybe a stuck valve—that caused the engine to run rough and scared the pilot into making a hasty and poorly executed downwind landing.

In reporting this to Paul, I added that “when confronted with significant dissonance between what a pilot reports and what an engine monitor reports, I’m inclined to believe the engine monitor.”

Do mechanics know too much?

Paul’s reply intrigued me:

Mike, thanks for the analysis. I agree with your diagnosis. But what I find most telling is the difference between my “mechanic’s analysis” and your “analyst’s analysis.” At the end of the day, I think like a career mechanic with decades of history crammed into my head, and my experience as a mechanic prejudices my view. Because the pilot’s account of events made me think of many occasions when Lycoming pilots get into a Continental airplane and turn on the electric fuel pump for takeoff, I was already spring-loaded to look for information to support this hypothesis.

My takeaway from this is that I—and I believe career mechanics in general—are  the wrong people to analyze engine data. Career mechanics carry too much mental baggage to be effective as analyst. What I see mechanics not doing well is “connecting the dots” to analyze an unusual event. It also occurs to me that we mechanics might do better if we looked at the engine monitor data first before we talk to the pilot. I think that would help us to evaluate the data more objectively.

Of course, I’m also a mechanic, but I don’t consider myself a “career mechanic” like Paul. I haven’t been working on airplanes since before puberty the way Paul has, and I’ve never made my living swinging wrenches the way Paul does. I don’t have those decades of real-world experiences crammed into my brain, so I tend to analyze things more “from first principles” while career mechanics like Paul tend to analyze them through “pattern matching” against the historical library in their noggins.

Thinking, fast and slow

Daniel Kahneman's book "Thinking, Fast and Slow"

Nobel laureate Daniel Kahneman’s book discusses human “two-system thinking” and explains its pitfalls.

In his 2011 book Thinking, Fast and Slow, economist and Nobel laureate Daniel Kahneman postulates that the human brain operates in two fundamentally different modes:

  • System 1 thinking:Operates automatically and quickly with little or no effort. It is fast, intuitive, emotional, and subsconscious.
  • System 2 thinking:Operates deliberatively and requires conscious effort. It is slow, rational, logical and calculating.

A student pilot relies on controlled System 2 thinking, requiring focused concentration on performing a sequence of operations that require considerable mental effort and are easily disrupted by distractions. In contrast, an experienced pilot, relying on automatic System 1 thinking, can carry out the same tasks efficiently while engaged in other activities (such as talking to ATC or calming a nervous passenger). Of course, the pilot can always switch to more conscious, focused and deliberative System 2 processing when he deems that to be necessary, such as when encountering challenging weather conditions or dealing with equipment failure.

Similarly, career A&P mechanics rely primarily on fast, automatic System 1 thinking. (Imagine what your maintenance invoice totals would be if they didn’t!) The more experience a mechanic has, the stronger his System 1 skills become. This kind of thinking serves the mechanic well most of the time, but it can break down when a challenging troubleshooting problem demands switching to slow, deliberative, thoughtful, logical System 2 thinking. Career mechanics often don’t have the time or training to flip that switch.

System 1 thinking is fast and easy and economical and even magical at times. The problem is that sometimes it yields the wrong answer. Consider this simple problem:

A bat and a ball together cost $5.50. If the bat costs $5 more than the ball, what does the ball cost?

Most people who look at that problem find that an answer—50 cents—pops into their mind immediately, effortlessly and without any conscious calculation. It’s intuitive, not reasoned.

It’s also wrong. The correct answer is 25 cents. To get the correct answer, most people have to consciously switch into “System 2 mode” and recognize that this is an algebra problem:

x + y = $5.50
x = y + $5.00
y = ???

Presented in that fashion, most people get the right answer. But such problems generally do not announce themselves as algebra problems. It takes training and skill to recognize when the mental switch needs to be flipped.

Do we need a new mechanic rating?

I attribute my skill as a troubleshooter largely to my training as a mathematician and my 30-year career as a professional software developer, both fields that deal with complex abstraction and absolutely demand strong System 2 thinking. At SavvyAnalysis.com, most of our professional engine monitor data analysts are not A&P mechanics. One is a genomics researcher, two are aeronautical engineers, and yet another is an award-winning music composer—all fields that require a great deal of System 2 thinking. It’s rather rare to find career A&P mechanics with these sorts of backgrounds.

Other professions—notably medicine and education—recognize that diagnosis and therapy (or troubleshooting and repair, if you prefer) are dramatically different activities that require dramatically different skill sets. We don’t expect our neurosurgeons to interpret CT scans or analyze tissue samples or evaluate blood labs—we rely on radiologists, pathologists and hematologists for those things.

Similarly, I think perhaps it’s time that we stopped relying on career A&P mechanics—who are basically aircraft surgeons—to troubleshoot difficult problems, and started recognizing “mechanic-diagnostician” as a new aviation maintenance specialty. What do you think?

AOPA’s Regional Fly-Ins Connect Us All

Monday, January 12th, 2015
Plan now to attend

Plan now to attend

I was so happy to see the release of the dates and locations of AOPAs regional fly-ins last week. It reminds me of how big and small our world of aviation is. These free community events bring us together as lovers of all things aviation. A secondary benefit is to the communities that host the fly-in. Salinas, CA, Frederick, MD, Minneapolis, MN, Colorado Springs, CO and Tullahoma, TN will all experience the literal and figurative buzz from airplanes and helicopters as thousands make their way to the one-day events.

I believe that events at airports help the surrounding communities to see them as good neighbors. The more that we can bring folks to the airport for a positive experience, the more likely the public is to remember that when perhaps there is a noise issue. It also helps to highlight the multiple facets of our airports. Yes, airports are a transportation hub. But they are also an economic engine for the community bringing in business, pleasure, emergency response, recreational and charitable flights.

Having participated in all of the AOPA Regionals last year, with my service group, the Mooney Ambassadors, I have to say “hats off” to AOPA and whoever thought of the regional fly-in idea. The events were very well planned, implemented expertly and had a very friendly and approachable feel to them.

EAA's Jack Pelton, Mooney Ambassador Ed Mandibles

EAA’s Jack Pelton and Mooney Ambassador Ed Mandibles

I remember that early in the morning of the Chino, California event we had EAA’s Jack Pelton and nationally known aviation humorist Rod Machado stop by our display.  For me, these are famous people, yet they were sipping coffee strolling among the displays. It was so fun to have them look at Ed Mandible’s M18 Mooney Mite. This camaraderie to me means EAA supports AOPA, AOPA supports EAA. We all win.

EAA’s AirVenture at Oshkosh, WI is like Disneyland for aviators. It should be noted that I am a big fan of Oshkosh and have attended yearly for the past 6-7 years. One draw back to AirVenture might be work or geographical limitations that prevent us from attending a week-long show. With the regional format, I believe that we can might reach more aviation lovers. The day long event was also an avenue for meeting future pilots, and non-current pilots.

With the regional format I believe that any pilot would be hard-pressed to find a better opportunity to see nationally known speakers, authors and presenters in one place. When we consider that this event is free of charge that is just the icing on the cake. There will be volunteer opportunities as well, so if you can lend a hand, make sure to do so.

Now that the schedule has been published, make sure to mark your calendars, register and attend. Our aviation community is large, but these type events have a hometown feel that is just spectacular. Take advantage of the educational opportunities. Make sure to get there early to visit the exhibitors and vendors. Why not plan attendance with several planes from your home airport? Many of the venues offer free camping the day before and of the event. While there, when you see someone in the familiar khaki pants and blue AOPA shirt, thank them for their part. . Most of all come. When we join together, we have a unified voice. We need to protect our airports and promote General Aviation. Whether you fly-in or drive-in you will be happy you did.

AOPA PYM

AOPA PYM

Who’s the Best Pilot?

Monday, December 22nd, 2014

One of the many iconic scenes (so much so that it recurs several times in the film) from The Right Stuff has astronaut Gordon Cooper asking his wife, “Who’s the best pilot you ever saw?” before answering his own question: “You’re lookin’ at him!” Gordo was telling a joke, of course, but it got me thinking about what constitutes a great pilot in the real world.

Accident statistics show that when light GA pilots try to operate on a firmly fixed schedule — for example, around the holidays — the risk level increases. AOPA recently published an Air Safety Alert to that effect, noting “a cluster of GA accidents occurring in close succession.”

Some of this probably has to do with the fact that the holiday season occurs in the winter for those of us living in the northern hemisphere. While the hot months have their own set of challenges, they tend to consist of things which present equal hazard to all aircraft: thunderstorms, high density altitude, etc. But whereas large multi-engine turbojets are well-equipped for cold weather flying, single-engine recips typically operate with minimal anti- and de-icing equipment, if any.

Anyway, it occurs to me that this kind of flying is exactly what we do in the Part 135 world. We operate on someone else’s timetable, and rarely is that schedule created with weather, circadian rhythm, airport staffing hours, or other such operational concerns in mind. As you might expect, the 135 safety record — while far better than Part 91 — does not reach the rarefied heights of the scheduled airlines. Some people feel it should. There are plenty of folks who feel Part 91 should reach that strata as well.

I tend to disagree.

Part 135 has the flexibility to operate at random times and into a far wider variety of places than scheduled airlines. While we do everything possible to make the flights as safe as humanly possible, flexibility cannot help but exact a price. Flying worldwide charter, I don’t know if my next trip will take me to Liberia or Las Vegas. I have to be prepared to go anywhere.

If that sounds incredible, then light general aviation flying should really blow your mind! The non-commercial Part 91 aviating so many of us do for personal reasons takes that freedom and ramps it up a hundred fold. Not only can you go anywhere you want at any time it suits you, you can do it at night, in IMC, in formation, and fly some aerobatics or sight-see along the way. You can fly a weird experimental airplane that you built in your garage. You can tow banners. Drop things from your airplane, then cut them up as they fall to earth? Yes, that’s fine. Fly high… or low. You can change your destination in mid-flight without asking anyone’s permission.

Heck, you can even take off with no destination whatsoever; those are some of my most cherished flights. When I call the VFR clearance delivery frequency at John Wayne Airport and they ask where I’m headed, nothing says freedom quite like using William Shatner’s response from the first Star Trek film: “Out there. That-a-way!”

Wrapping your mind around having the liberty to do those things while not being able to install a radio in your panel without approval from a certification office somewhere in Oklahoma City could cause a migraine… but let’s leave that for another day.

The point is, with added freedom comes added risk. And responsibility. It’s ironic that we think of airline pilots as having the greatest weight on their shoulders when rules, procedures, and operational specifications dictate almost everything they do. I’m not saying their job is easy. It ain’t. But if you’re not in awe of the authority and self-determination placed on your own shoulders every time you launch, think about this: we could have the safety record of the major airlines. All we’d need are the same rules and requirements for flight that they use. Seems to me that would be an awful lot like asking Santa for a big, dirty lump of coal in your stocking.

If there’s a way to have the freedom to land on five hundred foot long strips on the side of a mountain, tackle water runways, engage in flight training, and — most of all — fly to that family Christmas in an airplane with just one reciprocating engine without significantly higher risk than you’ll find on a typical airliner, I’d be quite surprised. But one thing every pilot has in common is that risk management is a major part of the job.

So as you contemplate that cross-country flight to celebrate the holidays with your loved ones, remember that the best pilot isn’t the one who finds the cheapest fuel, stuffs the most presents into the baggage compartment, or makes the softest landing. It’s the one who best manages the risk inherent in that flight.

Right, Gordo?

It’s not about the nail! Well maybe it is.

Saturday, December 13th, 2014
Work to keep your airport an airport

Work to keep your airport an airport

 

This month’s blog is a bit eclectic I will admit. Perhaps it is because the holidays are right around the corner, or the New Year is about to begin. As I reflect on the past couple of months in our aviation world I keep getting drawn back to a beautiful and historic airport, KSMO Santa Monica. As many of you know, the citizens of Santa Monica, CA recently voted on two initiatives directly related to the health and vitality of the iconic GA airport.

The grassroots group Santa Monica Voters for Open and Honest Development Decisions was successful in placing a ballot measure which would have required the City of Santa Monica to get approval from the voters with any changes or re-development of the airport. The residents did not support the ballot measure or the airport. Yet, the work of keeping SMO an airport will continue. I believe we are called to take a larger and a smaller view, both in Santa Monica and for all of us around the country.  I will attempt to explain.

When I was in graduate school for social work, we were trained to look for the macro and the micro view of the presenting problems of our clients. In a nutshell we have to look at the big picture and the small, the global and the personal. When we think about change, loss, or transition we need to see the forest and the trees.  As a psychotherapist the majority of my work is with clients undergoing change and an opportunity for growth.

Embrace Growth

Embrace Growth

 

This blog post from Mystic Mamma seems to fit the micro-bill. “It is very likely that our personal metamorphosis may feel chaotic, painful and very uncomfortable. Breathe and allow it, know it won’t last and it is a moving energetic flow. Then we are moving along with it all than clenching down and blocking the flow of energy. Truly, we may not be in control over the evolutionary force or how long things last in the growth and or healing, yet we have the option to make a conscious powerful choice to move with ease and effortlessness through non-resistance and knowing we are guided and supported by all of life.”   http://www.mysticmamma.com/

For me, this means knowing that change is hard, that believing in something and having to change your view is tough psychological work.   I also remember some very early advice I got from a leader in the GA community. He said, “Always be positive, in public, in the media, in your writing,  always be positive.”

How does this apply to aviation? We all, are airport, and airplane, lovers. When it comes to our local airport, we need to think small. By that I mean local level, community-based. How can your airport serve your community in non-aviation needs? Perhaps this would look like a space for community meetings, a host of a canned food drive, or a fund-raiser for the local humane society. With our home airports, sometimes we need to step up, raise our voices and let our opinions be known. This might mean speaking in front of the airport board, or county commissioners. Use your local airport as a resource. Bring the community inside the fence. We need to be able to tell the truth. If someone wants to do something unsafe at an airport, speak up. We need to be on guard for encroachments, misapplications of directives, and oppressive policies.

The second level of involvement is in between micro and macro, it is the state level. Are you involved with your state aviation association? Do you know who your regional director for AOPA is? Do you have a Representative or Congressman from your state on the GA Caucus? Have you thought about becoming involved with aviation at the state or regional level?

It's not about the nail

It’s not about the nail

Click on  this photo to the left for a fun look at the macro view.

 

In sum, let’s see the forest and the trees. Do what you can locally, today. Check in to your regional and state opportunities. Be an active member in our national associations. Together we can all see the nail, and pull it out!

A Self-Evident Solution

Monday, November 24th, 2014

Times are tough for general aviation, and we need a solid partner and advocate in Washington now more than ever. Unfortunately, the FAA is proving to be the exact opposite—a lead weight—and it’s becoming a big problem.

Complaining about the FAA has been a popular spectator sport for decades. I feel for those who work at the agency because most of the individuals I’ve interacted with there have been pleasant and professional. They often seem as hamstrung and frustrated with the status quo as those of us on the outside. In fact, I took my commercial glider checkride with an FAA examiner from the Riverside FSDO in 2004 and consider it a model of how practical tests should be run. So I’m not suggesting we toss the baby out with the bathwater.

But somewhere, somehow, as an organization, the inexplicable policy decisions, poor execution, and awful delays in performing even the most basic functions lead one to the conclusion that the agency is beset by a bureaucratic sclerosis which is grinding the gears of progress to a rusty halt on many fronts.

Let’s look at a few examples.

Example 1: Opposite Direction Approaches Banned

If you’re not instrument-rated, the concept of flying an approach in the “wrong direction” probably seems… well, wrong. But it’s not. For decades, pilots have flown practice approaches in VFR conditions for training purposes without regard for the wind direction. There are many logical reason for doing so: variety, the availability of a specific approach type, to practice circling to a different runway for landing, and so on. John Ewing, a professional instructor based on California’s central coast, described this as “going up the down staircase”.

For reasons no one has been able to explain (and I’ve inquired with two separate FSDOs in my area), this practice is no longer allowed at towered fields. Here’s what John wrote about the change:

…the FAA has decided that opposite direction approaches into towered airports are no longer allowed. To the uninitiated, practice approaches to a runway when there’s opposite direction traffic may seem inherently dangerous, but it is something that’s been done safely at many airports for as long as anyone can remember. One example in Northern California is Sacramento Executive where all the instrument approaches are to Runway 2 and 90% of the time Runway 20 is in use.

At KSAC, the procedure for handling opposite direction approaches is simple and has worked well (and without incident, to my knowledge): The tower instructs the aircraft inbound on the approach to start their missed approach (usually a climbing left turn) prior to the runway threshold and any traffic departing the opposite direct turns in the other direction.

For areas like the California Central Coast, the restriction on opposite direction instrument approaches has been in place since I arrived in June and it has serious implications for instrument flight training since the ILS approaches for San Luis Obispo, Santa Maria, and Santa Barbara are likely to be opposite direction 90% of the time. For a student to train to fly an ILS in a real aircraft, you need to fly quite a distance. Same goes for instrument rating practical tests that require an ILS because the aircraft is not equipped with WAAS GPS and/or there’s no RNAV approach available with LPV minima to a DA of 250 feet or lower.

The loss of opposite-direction approaches hurts efficiency and is going to increase the time and money required for initial and recurrent instrument training. As good as simulators are, there’s no substitute for the real world, especially when it comes to things like circling to land. Between the low altitude, slow airspeed, and division of attention between instruments and exterior references required for properly executing the maneuver, circling in low weather can be one of the most challenging and potentially hazardous aspects of instrument flying. If anything, we need more opportunities to practice this. Banning opposite-direction approaches only ensures we’ll do it less.

Example 2: The Third Class Medical

Eliminating the third class medical just makes sense. I’ve covered this before, but it certainly bears repeating: Glider and LSA pilots have been operating without formal medical certification for decades and there is no evidence I’m aware of to suggest they are any more prone to medical incapacitation than those of us who fly around with that coveted slip of paper in our pocket.

AOPA and EAA petitioned the government on this issue two years and nine months ago. The delay has been so egregious that the FAA Administrator had to issue a formal apology. Obviously pilots are clamoring for this, but we’re not the only ones:

Congress is getting impatient as well. In late August, 32 members of the House General Aviation Caucus sent a letter to Department of Transportation Secretary Anthony Foxx urging him to expedite the review process and permit the FAA to proceed with its next step of issuing the proposal for public comment. Early in September 11 Senators, who were all co-sponsors of a bill to reform the medical process, also asked the Department of Transportation to speed up the process.

So where does the proposed rule change now? It is someplace in the maze of government. Officially it is at the Department of Transportation. Questions to DOT officials are met with no response, telling us to contact the FAA. FAA officials comment that “it is now under executive review at the DOT.”

The rule change must also be examined by the Office of Management and Budget.

When the DOT and OMB both approve the proposal—if they do—it will be returned to the FAA, which will then put it out for public comment. The length of time for comments will probably be several months.

After these comments are considered, the FAA may or may not issue a rule change.

It occurs to me that by the time this process is done, it may have taken nearly as long as our involvement in either world war. Even then, there’s no guarantee we’ll have an acceptable outcome.

Example 3: Hangar Policy

The commonsense approach would dictate that as long as you’ve got an airplane in your hangar, you should be able to keep toolboxes, workbenches, American flags, a refrigerator, a golf cart or bicycle, or anything else you like in there. But the FAA once again takes something so simple a cave man could do it and mucks it up. The fact that the FAA actually considers any stage of building an airplane to be a non-aeronautical activity defies both logic and the English language. Building is the very essence of the definition. People who’ve never even been inside an airplane could tell you that. In my mind, this hangar policy is the ultimate example of how out of touch with reality the agency has become.

Example 4: Field Approvals

These have effectively been gone from aviation for the better part of a decade. It used to be that if you wanted to add a new WhizBang 3000 radio to your airplane, a mechanic could get it approved via a relatively simple, low-cost method called a field approval. For reasons nobody has even been able to explain (probably because there is no valid explanation), it became FAA policy to stop issuing these. If you want that new radio in your airplane, you’ll have to wait until there’s an STC for it which covers your aircraft. Of course, that takes a lot longer and costs a boatload of money, if it happens at all. But the FAA doesn’t care.

Homebuilts put whatever they want into their panels and you don’t see them falling out of the sky. Coincidence? I don’t think so.

Example 5: RVSM Approvals

Just to show you that it’s not only the light GA segment that’s suffering, here’s a corporate aviation example. The ability to fly in RVSM airspace—the area between FL290 and FL410—is very important. Being kept below FL290 is not only inefficient and bad for the environment, it also forces turbine aircraft into weather they would otherwise be able to avoid. The alternative is to fly at FL430 and above, which can mean leaving fuel and/or payload behind, or flying in a paperwork-induced coffin corner.

Unfortunately, RVSM approval requires a Letter of Authorization from the FAA. If the airplane is sold, the LOA is invalidated and the new owner has to go through the paperwork process with the FAA from step one. Even if the aircraft stays at the same airport, maintained by the same people, and flown by the same crew. If you so much as change the name of your company, the LOA is invalidated. If you sneeze or get a hangnail, they’re invalidated.

From AIN Online:

Early this year the FAA agreed to a streamlined process to handle RVSM LOA approvals, but for the operator of a Falcon 50 that is not the case. He told AIN that he has been waiting since April for an RVSM LOA.

Because the LOA hasn’t been approved, this operator can fly the Falcon 50 at FL290 or lower or at FL430 or above. On a hot day, a Falcon 50 struggles at FL430. “The other day ISA was +10,” he told AIN, “and we are just hanging there at 43,000 at about Mach 0.72. If we had turbulence we could have had an upset. We’re right there in the coffin corner. Somebody is going to get hurt.”

On another recent flight in the Falcon, “There was a line of storms in front of us. We’re at FL290. They couldn’t let us climb, and I was about to declare an emergency. I’m not going to run my airplane through a hailstorm. It’s turbulent and the passengers are wondering what’s going on.”

When forced to fly below FL290, the Falcon burns 60 percent more fuel, he said. The company’s three Hawkers have a maximum altitude of FL410, and LOA delays with those forced some flights to down to lower altitudes. “We had one trip in a Hawker before it received its RVSM LOA,” he added, “and they got the crap kicked out of them. Bobbing and weaving [to avoid thunderstorms] over Iowa, Minnesota and Nebraska in the springtime, you’re going to get your [butt] kicked.” The Hawker burns about 1,600 pph at FL370, but below FL290 the flow climbs to more than 2,000 pph.

It’s bad for safety and the FAA knows it. If they were able to process paperwork quickly, it might not be such an issue, but many operators find that it takes many months—sometimes even a year or more—to get a scrap of paper which should take a few minutes at most.

Show Me the Money

So what’s behind the all this? Americans love to throw money at a problem, so is this a budget cut issue? Perhaps the FAA is a terribly cash-starved agency that simply isn’t given the resources to do the jobs we’re asking of it.

According to the Department of Transportation’s Inspector General, that’s not the case. He testified before the House Committee on Transportation and Infrastructure earlier this week that the FAA’s budget has been growing even as traffic declines:

The growth of the agency’s budget has been unchecked, despite the managerial failings and the changes in the marketplace. Between 1996 and 2012, the FAA’s total budget grew 95 percent, from $8.1 billion to $15.9 billion. During that same period, the agency’s air traffic operations dropped by a fifth. As a result, taxpayers are now paying the FAA nearly twice as much to do only 80 percent of the work they were doing in the 1990s.

Over that same 16-year span, the FAA’s personnel costs, including salary and benefits, skyrocketed from $3.7 billion to $7.3 billion—a 98 percent increase—even though the agency’s total number of full-time workers actually fell 4 percent during that time.

Self-Evident Solutions

Okay, we’ve all heard the litany of issues. From the inability to schedule a simple checkride to big problems with NextGen development or the ADS-B mandate, you’ve probably got your own list. The question is, how do we fix the problem?

I think the answer is already out there: less FAA oversight and more self-regulation. Look closely at GA and you’ll see that the segments which are furthest from FAA interference are the most successful. The Experimental Amateur-Built (E-AB) sector and the industry consensus standards of the Light Sport segment are two such examples. The certified world? Well many of them are still building the same airframes and engines they did 70 years ago, albeit at several times the cost.

Just as non-commercial aviation should be free of the requirement for onerous medical certification, so too should it be free of the crushing regulatory weight of the FAA. The agency would make a far better and more effective partner by limiting its focus to commercial aviation safety, promoting general aviation, and the protection and improvement of our infrastructure.