Posts Tagged ‘FAA’

See & Avoid Doesn’t Work

Tuesday, November 10th, 2015

Contemplate the worst scenario that might confront a pilot during a flight. What comes to mind? Fire? Flight control failure? Engine failure? Perhaps it’s flight crew incapacitation, explosive decompression or severe structural damage.

No doubt about it, those all fall into the Very Bad Day category. But there’s one that can be even worse: a mid-air collision. That’s because it can involve all the problems listed above — at the same time. And since the parties involved aren’t aware of the impending crunch until it’s too late, the mid-air is usually accompanied by a violent element of surprise, confusion, and initial denial.

You might think fatal mid-airs are rare events, and from a purely statistical standpoint I’d have to agree. According to the 2010 Nall Report, a fatal mid-air occurs about once every 8 million flight hours. Think of it as the roughly the same odds as winning the lottery or being struck by lighting. Doesn’t sound so bad, does it? A typical GA pilot might accumulate but thousand or so hours over a full lifetime of flying.

So what’s there to worry about? Plenty. The “big sky” theory may sound good, but it doesn’t hold up very well under close scrutiny. It’s true that the navigable atmosphere over the United States alone is massive — about 20 million cubic miles — and there are relatively few airplanes in the sky. Even on those occasions where a collision is possible, modern tools such as radar, TCAS, VHF communication, and anywhere between two and four sets of eyeballs almost always succeed in averting the disaster. If aircraft were equally distributed throughout the atmosphere, the “big sky” idea would be pretty comforting.

But airplanes cluster near airports, large cities, and on thin slices of the sky known as “airways”. For the VFR types, airspace and terrain often crowd planes into small swaths of the air in places like the Santa Ana Canyon or Banning Pass. The sky is much like the ground: vehicles stick to relatively confined spaces and that makes collisions a serious hazard.

Since we’re on the topic of statistics, let me give you a few of my own: I personally know two people who have been struck by lightning, and a winning lottery ticket was recently sold not 300 feet from my front door. Hey, crazy stuff happens. But unlike lighting strikes and golden tickets, we’re not all facing the same odds. The risk profile varies widely depending on the type of flying you’re doing.

For example, flight instruction is frequently a factor; thirty-seven percent of mid-airs occur with a CFI on board. Many instructional flights happen near airports, and as previously mentioned, that’s where other airplanes tend to congregate. On the other hand, if you fly airliners, your risk of a mid-air is rather low because the aircraft itself is large and easy to see, you’re always flying IFR, and the most sophisticated traffic avoidance hardware available is always installed. Airliners also spend most of their time in cruise and are in constant radar contact with ATC.

Midair collisions are almost as old as powered flight itself.  This B-17 collided with a German fighter over Tunisia in 1943.

Midair collisions are almost as old as powered flight itself. This B-17 collided with a German fighter over Tunisia in 1943.

Think it can’t happen to you? Think again. Some very talented, capable, and well-respected pilots have been involved in mid-air collisions. I know a guy who was involved in one while flying a large-cabin, TCAS-equipped business jet under Instrument Flight Rules. Alan Klapmeier, the founder of Cirrus Aircraft, was in one too. Richard Collins, famed Flying columnist, was in a mid-air. Speaking of Flying, the recent Editor-in-Chief owns a very nice Cirrus SR-22 which was in a mid-air. And lastly, a decade ago I was in a mid-air collision myself.

I’ll save the blow-by-blow (no pun intended) on that for another day. The point I’m trying to make is that the odds of a mid-air are probably greater than you think, especially if you live in a populated metropolitan area and fly VFR. If you’ve ever had a close encounter with another airplane in flight, you were only separated from “those who have” by nothing more than a miniscule sliver of plain old luck.

Think about that for a moment.

This may be hard to believe, but there is some good news. For one thing, mid-airs are not always fatal. It seems intuitive that most collisions would involve fatalities, but all the people I cited above survived, including (obviously) myself. Also, technology is rapidly advancing, from cheap TCAD boxes to airframe parachutes to super-bright LED exterior lighting.

The question we should all be asking ourselves is how we avoid ending up in a mid-air, fatal or otherwise. If you refer to official guidance from the FAA, the answer is to simply look out the window and spot the other airplane before it hits you. This technique, referred to as “see and avoid”, is still considered adequate for preventing collisions. Here are a couple of passages from Chapter 1 of the Airplane Flying Handbook:

The “See and Avoid” concept relies on knowledge of the limitations of the human eye, and the use of proper visual scanning techniques to help compensate for these limitations. The importance of, and the proper techniques for, visual scanning should be taught to a student pilot at the very beginning of flight training.

Proper clearing procedures, combined with proper visual scanning techniques, are the most
effective strategy for collision avoidance.

Other FAA publications, ranging from the Aeronautical Information Manual, to Advisory Circulars like AC-90-48 (“Pilot’s Role in Collision Avoidance”) will give you the same spiel: “see and avoid will keep you safe”. And it will! Until it doesn’t.

From my perspective as someone who’s been in a mid-air and who was using proper clearing and scanning techniques at the time, I take it as gospel that “see & avoid” won’t always do the trick. I’m just one guy, of course. But many others — some institutional in nature — just happen to agree with me.

For example, a couple of years ago Canada’s Transportation Safety Board issued an accident report on a mid-air collision between a Beech V-35B Bonanza and a PA-28 Cherokee over northern Virginia. Canada was tasked with performing the investigation because the pilots of the Bonanza were employees of the NTSB while the Cherokee was piloted by an employee of the FAA.

I won’t keep you in suspense. The conclusion from the TSB was that the “see and avoid” concept was inadequate. They even quoted a 1991 report produced by the Australian Transport Safety Bureau which provides an overview of the major factors that limit the effectiveness of the see-and-avoid principle in preventing mid-air collisions, as well as a 2005 scientific study published in Aviation, Space, and Environmental Medicine which came to the same conclusions.

The main points:

  • Cockpit workload and other factors reduce the time that pilots spend in traffic scans, and even when pilots are looking out, there is no guarantee that other aircraft will be sighted.
  • Visual scanning involves moving the eyes in order to bring successive areas of the visual field onto the small area of sharp vision in the center of the eye. The process is frequently unsystematic and may leave large areas of the field of view unsearched.
  • A thorough, systematic search is not a solution as in most cases it would take an impractical amount of time.
  • The physical limitations of the human eye are such that even the most careful search does not guarantee that traffic will be sighted.
  • The pilot’s functional visual field contracts under conditions of stress or increased workload. The resulting ‘tunnel vision’ reduces the chance that an approaching aircraft will be seen in peripheral vision.
  • The human visual system is better at detecting moving targets than stationary targets, yet in most cases, an aircraft on a collision course appears as a stationary target in the pilot’s visual field.
  • An approaching aircraft, in many cases, presents a very small visual angle until a short time before impact.
  • Complex backgrounds such as ground features or clouds hamper the identification of aircraft via a visual effect known as ‘contour interaction’. This occurs when background contours interact with the form of the aircraft, producing a less distinct image.
  • Even when an approaching aircraft has been sighted, there is no guarantee that evasive action will be successful.
  • Because of its many limitations, the see-and-avoid concept should not be expected to fulfill a significant role in future air traffic systems.
  • Transportation Safety Board of Canada aviation investigation report A06O0206 identified that there is a high risk of mid-air collisions in congested airspace when aircraft are not alerted to the presence of other aircraft and rely solely on the see‑and-avoid principle.

There’s one more area of the TSB report which is worth of quotation. In it, they reference a British Royal Air Force study into mid-air collisions. If you’re keeping score, that’s the third sovereign agency to reach the conclusion that “see and avoid” is inadequate. Yet our own FAA, which oversees about 80% of the world’s aircraft and almost all of the high traffic density airspace, still officially proclaims that one can look out the window and see everything that needs to be seen.

This accident has demonstrated yet again that relying solely on the see-and-avoid principle to avoid collisions between aircraft operating under visual flight rules (VFR) in congested airspace is inadequate.

A number of international studies have addressed the overall issue of the effectiveness of the see-and-avoid principle, as well as the risks of collision associated with this principle. All acknowledged the underlying physiological limitations at play and that, when mid-air collisions occur, “failure to see-and-avoid is due almost entirely to the failure to see.”

One study stated that “our data suggest that the relatively low (though unacceptable) rate of mid-air collisions in general aviation aircraft not equipped with TCAS [traffic alert and collision avoidance system] is as much a function of the ‘big sky’ as it is of effective visual scanning.”

A British Royal Air Force study into mid-air collisions, which were deemed to be random, found that the probability of conflict is proportional to the square of the traffic density, and recommended avoiding altitude restrictions that concentrate traffic.

Measures such as improving aircraft conspicuity, pilot scanning techniques, and pilot traffic awareness can reduce risks, but they do not overcome the underlying physiological limitations that create the residual risk associated with a see-and-avoid method.

It’s obvious that “see and avoid” cannot, by itself, ensure our safety. If it could, there’d be no need for TCAS or most of our controlled airspace (both of which came about because of high-profile mid-air collisions, I might add!). I’m not necessarily in favor of mandating any additional equipment, airspace, or restrictions, especially on general aviation. But it’s clear that serious changes are needed in how collision avoidance is taught, especially as it concerns “see and avoid”. The concept has serious limitations which must be understood so the pilot-in-command can make educated decisions about how — or even if — they want to mitigate those risks.

I sincerely hope our nation’s regulatory and safety organizations will eventually acknowledge what we all know to be true: “see and avoid”, while a good start and certainly a vital part of collision avoidance, is simply not sufficient to ensure traffic separation.

ATC and pilots: When to keep your mouth shut and when to speak up

Monday, September 21st, 2015

This sounds a bit pathetic, but most of the professional pilots I’ve known in my life have been smart alecks, me included … always ready with an opinion, whether anyone asked for it or not. We’re all control freaks to some degree I suppose, not an earth-shattering revelation of course, because those are the kind of people you want around when it’s time to grab the controls and say, “I’ve got it.”

Sometimes knowing when not to grab the microphone in the cockpit though, can be just as important, especially for me when it comes to ATC at least. I spent a decade of my aviation life in a control tower and behind a radar scope, which was just enough to qualify me – by my standards of course – as an expert.


Madison Wi (MSN)

Case in point to grabbing that microphone occurred at Madison, Wis., a few weeks ago with a student in the Cirrus. We were VFR in right traffic for Runway 31 and requesting multiple “option approaches,” the ones that leave it to us to decide whether we’ll make a full stop, stop and go, low approach, or whatever might be left. The long runway, 18-36, was closed for construction and some itinerant traffic was using Runway 3-21. BTW, tower assigned us Runway 31 which I did wonder about with traffic on Runway 3, but then since every controller runs their traffic patterns a little differently I thought no more about it.

After the third or fourth option approach, the tower cleared us to land on Runway 31, but never explained why. On touch down, I simply forgot and told the student “let’s go” and he added full power and reduced the flap setting. As soon as we broke ground the “cleared to land” part flashed in my mind. Maybe 100 feet in the air, the local controller in MSN tower firmly reminds me that when he says cleared to land, he means cleared to land. I really tried not to respond, but of course I did, “Sorry about that. My fault. But 18/36 is closed right?” as in, so what was the real problem other than my failure to follow orders. I honestly didn’t know. Someone in the tower keyed the mic as if they were going to say something and then decided against it. We landed about 15 minutes later and the ground controller reminded me that I had earlier been cleared to land on Runway 31 and that they really need me to follow instructions in the future. Of course you know I keyed the microphone and asked again what the issue was other than blowing the order … “Did I conflict with some other aircraft?” “No, but you were cleared to land, not for an option,” he said. Since the other pilot was becoming uncomfortable with the exchange I just said, “Roger. Thanks,” and let it go. After all, I did blow it. I just would have liked to have known a bit more, but I decided to just let it go.


Kenosha Wi. (ENW)

Jump ahead a month or so and I’m again acting as CFI in the traffic pattern at Kenosha, Wis., this time having watched the other pilot I’m flying with land out of a really nicely handled circling instrument approach. We decide to stay in the VFR traffic pattern for a bit so the controller in the tower – obviously working both tower and ground himself – taxies us to Runway 7 Left. As we taxi, I hear him chatting with a Citabria pilot he’s sending to Runway 7 Right. About now I became occupied watching my pilot prepare for another takeoff.

Some part of my brain must have heard the tower clear the Citabria for takeoff from the right runway with a left turn out, just before he cleared us from the left runway, but it remained one of those distant notes in my brain until we were about 200 feet in the air. That’s when I saw the taildragger cutting across our path from the right. I instinctively told the pilot I was flying with to head right behind the Citabria as the ENW controller mentioned him as “traffic ahead and to our right.” He was a lot more than that. If we hadn’t turned, it would have been close.

The pilot flying with me looked at me in wonderment as I just shook my head and keyed the microphone … “nice tower.” No response.

I rang the tower manager a few days later on the phone because I wanted him to know how close I thought we would have been had we not banked right after takeoff. I told him I thought the ENW tower controller just plum forgot about the taildragger off the right when he cleared us for takeoff. I got it. It happens. I just wanted to see if I’d missed something here too.

Sad to say but the tower manager at Kenosha never rang back. This is where it becomes tough for me. Should I ring the tower manager again and risk sounding like a know-it-all? I make mistakes too. What do you think? Let me know at [email protected].

Is Your Aircraft Okay to Fly?

Thursday, July 23rd, 2015

Who decides whether or not your aircraft is airworthy?

Airworthy steampEarlier this year, I wrote an article titled “Fix It Now…Or Fix It Later” that was published in a major general aviation magazine. The article discussed how to deal with aircraft mechanical problems that arise during trips away from home base. It offered specific advice about how pilots and aircraft owners can decide whether a particular aircraft issue needs to be addressed before further flight or whether it can safely wait until the aircraft gets back home. I considered the advice I offered in this article to be non-controversial and commonsense.

I was surprised when I received an angry 700-word email from a very experienced A&P/IA—I’ll call him “Damian” (not his real name)—condemning my article and accusing me of professional malfeasance in advising owners to act irresponsibly and violate various FARs. Damian’s critique started out like this:

After reading Mike Busch’s commentary “Fix It Now … Or Fix It Later,” I must take exception to most, if not all, the points made in his column. I believe his statements are misleading as to the operation of certified aircraft, to the point of being irresponsible for an A&P to suggest or imply that it’s up to the owner/operator whether or not to fly an aircraft with a known discrepancy. The FARs are quite clear on this matter, and there have been numerous certificate action levied on pilots who have operated aircraft with known discrepancies.

Damian went on to state that the FARs require that any aircraft discrepancy, no matter how minor, must be corrected and the aircraft approved for return to service “by persons authorized under FAR 43.7 (typically the holder of a mechanic certificate).” He went on to explain that the owner/operator may only approve for return to service those preventive maintenance items listed in FAR Part 43 Appendix A. He went on:

It should be noted that the FAA does not take into consideration the inconvenience or cost related to addressing a known discrepancy. Nor is it up to the owner/operator to determine the significance of a discrepancy as the FARs do not confer this discretion privilege to the owner/operator.

Damian’s attack on my article continued at great length, making it quite clear that his believe is that pilots and aircraft owners are mere “appliance operators” in the eyes of the FAA, and that only certificated mechanics are empowered to evaluate the airworthiness of an aircraft and determine whether or not it is legal and safe to fly. He ended his diatribe by saying:

I hope that others in the aviation community such as FAA Airworthiness Safety Inspectorss and aviation legal professionals weigh in on this commentary. I believe all will agree that this commentary is misleading and uninformed to the point of being irresponsible even to publish. At the very least, pilots that follows the advice of Busch’s commentary should enroll in the AOPA Pilot Protection Services plan because they’re likely to need it!

Whew! Strong stuff! If Damian is right, then the FAA had better lock me up and throw away the key. Fortunately for me, I believe he isn’t and (at least so far) they haven’t.

Where Damian Has It Wrong

Damian and I do agree on at least one thing: FAR 91.7 does indeed say quite unequivocally that it is a violation to fly an unairworthy aircraft, and that if the aircraft becomes unairworthy in flight, the PIC is obligated to discontinue the flight. I would never suggest for a moment that any pilot fly a known-unairworthy aircraft, at least without a ferry permit. That’s a no-brainer.

The much more difficult question is: Exactly how does the PIC decide whether or not an aircraft is airworthy or unairworthy, and therefore whether he is or isn’t allowed to fly it? On this question, Damian and I part company. In fact, his view and mine seem to be diametrically opposite.

Damian’s view is that almost any aircraft discrepancy requires the involvement of an A&P mechanic to evaluate and clear the discrepancy and approve the aircraft for return to service. I see absolutely nothing in the FARs to support such a position, particularly when it comes to non-commercial aircraft operated under Part 91.

To begin with, the basic airworthiness rule (FAR 91.7) is crystal clear about who is responsible for determining whether or not the aircraft may be flown. It says:

The pilot in command of a civil aircraft is responsible for determining whether that aircraft is in condition for safe flight.

The regulation places the burden squarely on the shoulders of the PIC. I don’t see anything there about A&Ps or repair stations having to be involved, do you?

Looking a bit deeper into the FARs, I can find only three circumstances under which a mechanic is required to get involved in making any sort of airworthiness determination on a Part 91 aircraft used for non-commercial purposes:

  1. Exactly once a year, FAR 91.409 requires that an annual inspection be performed by an A&P/IA or a Repair Station. But the other 364 days of the year, it’s the PIC who determines whether the aircraft is airworthy.
  2. When an Airworthiness Directive or Airworthiness Limitation becomes due, FAR 91.403 requires that a mechanic must certify that the AD or AL has been complied with (with rare exceptions where the PIC may do so).
  3. When an owner actually hires a mechanic to perform maintenance on an aircraft, in which case the mechanic is required to document his work and sign it off to testify that the work was performed properly. Note, however, that the mechanic’s signature in the logbook entry does NOT signify that the aircraft is airworthy, only that THE WORK PERFORMED by the mechanic was done in an airworthy fashion.

This third point is one that is frequently misunderstood by mechanics and owners alike. When I teach this stuff at IA renewal seminars, the hypothetical example I often use to illustrate this important point involves an owner who takes his aircraft to a mechanic for repair. The mechanic immediately observes that the aircraft has two obvious discrepancies: the right main landing gear tire is flat, and the left wing is missing. The owner asks the mechanic to fix the flat tire. The mechanic does so, makes a logbook entry describing the work he did on the right main landing gear, and signs it. His signature denotes only that the work he did (fixing the flat tire) was done properly. When the owner picks up the aircraft, the mechanic tells the owner, “I couldn’t help but notice that your left wing is missing. If you’ll permit me to offer you a word of friendly advice, I would not attempt to fly the aircraft until that issue is resolved.” But the missing left wing does not prevent the mechanic from signing the logbook entry. In fact, the mechanic is required by regulation to sign the logbook entry, regardless of whether the aircraft is airworthy or not. The mechanic’s signature addresses only the work performed by the mechanic, and nothing else.

The PIC’s Burden

If you’re on a trip and some aircraft discrepancy occurs – assuming the aircraft isn’t in the midst of its annual inspection and there’s no AD involved – it is up to you as PIC to determine whether or not that discrepancy makes the aircraft unairworthy or not. If you decide that it does, then you can’t fly the airplane until the airworthiness issue is rectified (and that might require hiring an A&P). On the other hand, if you decide that the discrepancy doesn’t rise to the level of making the aircraft unairworthy, then you’re free to fly home and deal with the issue later.

Under the FARs, it’s totally the PIC’s call. There’s no regulatory obligation for the PIC to consult a mechanic when making such airworthiness determinations. Having said that, however, it would certainly be a wise thing to do if you feel uncomfortable about making the decision yourself. It’s your call.

The FARs provide considerable help to the PIC in making such airworthiness determinations. FAR 91.213(d) describes a specific algorithm for deciding whether or not it’s okay to fly an airplane with various items of inoperative equipment. FAR 91.207 says that it’s okay to fly an aircraft with an inoperative ELT to a place where it can be repaired or replaced, no ferry permit required. FAR 91.209 says that position lights needn’t be working if you’re flying during daylight hours. And so on.

If your experience is anything like mine, what most of us call “squawks” are common occurrences, but the majority of them don’t rise to the level of being airworthiness items that cause us (in our capacity as PIC) to conclude that a fix is required before further flight. Even if you do encounter a genuine airworthiness problem – say a flat tire or dead battery or bad mag drop – that still doesn’t mean that you necessarily need to get a mechanic involved. The FARs provide (in Part 43 Appendix A) a list of roughly three dozen items that a pilot-rated owner or operator is permitted to perform and sign off on his own recognizance (without getting an A&P involved).

If you have a flat tire, for example, you (as a pilot-rated owner) are permitted to repair or replace it yourself. If you have a dead battery, you can charge it, service it, or even replace it. If you have a bad mag drop, the most common cause is a defective or fouled spark plug, and you’re permitted to remove, clean, gap, and replace spark plugs yourself. You are also allowed to make repairs and patches to fairings, cowlings, fabric (on fabric-covered aircraft), upholstery and interior furnishings. You can replace side windows, seat belts, hoses, fuel lines, landing and position lamps, filters, seats, safety wire, cotter pins, and more. You can even remove and install tray-mounted avionics from your panel.

Now, you might well prefer to hire an A&P to do some of these things rather than do them yourself, especially when on the road, far from your hangar and toolbox. I know I certainly would, and I’m an A&P myself. But Damian’s contention that you are compelled by the FARs to place your aircraft in the hands of an A&P any time any sort of discrepancy arises is simply not supported by the regulations.

Contrary to what Damian and many of his A&P colleagues may believe, the FAR’s place the responsibility for determining the airworthiness of the aircraft squarely on the PIC, except for once a year when an IA is required to make an airworthiness determination after performing an annual inspection

My colleague Mac McClellan pointed out to me that this closely resembles how the FAA determines whether a pilot is “airworthy.” One day every year or two or five, we pilots are required by regulation to go get an examination from an Aviation Medical Examiner who pronounces us medically fit to fly, or not. The remaining 364 or 729 or 1,824 days in between, the FAA expects us to self-certify that we’re medically fit. “Can you imagine,” Mac asked me rhetorically, “if we had to go to see an AME every time we got a sore throat or runny nose?”

The Back Door is Locked

Friday, June 12th, 2015

Cessna 210In my AOPA Opinion Leaders Blog post of September 2014 (“Backdoor Rulemaking?”), I discussed the unprecedented action taken by the Cessna Aircraft Company intended to compel the owners of cantilever-wing Cessna 210s to perform repetitive eddy-current inspections of their wing spars. Finally, I can fill you in on the punch line.

By way of background: Normally, if an aircraft manufacturer believes that an unsafe condition exists that justifies imposing special inspections, component life limits, replacement or overhaul times, or similar burdens on aircraft owners, they go to the FAA and ask for an Airworthiness Directive (AD) to be issued. If the FAA is persuaded that the alleged unsafe condition actually constitutes a significant safety concern and that the burden on owners is reasonable given the safety risk, then the FAA issues a Notice of Proposed Rulemkaing (NPRM) announcing its intention to issue an AD and soliciting comments on the proposal from the affected public. The FAA is then required to consider and respond to all public comments submitted during the comment period before issuing its final rule that makes the AD effective. This same notice-and-comment protocol is required of all executive-branch regulatory agencies of the U.S. federal government by a law called the Administrative Procedure Act (APA).

Indeed, that’s precisely what Cessna did in 2013: It asked the FAA’s Wichita Aircraft Certification Office (ACO) to issue an AD mandating repetitive eddy-current inspections on all cantilever-wing Cessna 210s. But to Cessna’s chagrin, the Wichita ACO turned down Cessna’s request and declined to proceed with an AD, presumably because the ACO was not persuaded that such an AD was justified.

That should have been the end of the matter. But it wasn’t.

In February 2014, Cessna very quietly published a revision to the Cessna 210 service manual that added three new pages to the manual. Those three pages constituted a new section 2B to the manual, titled “Airworthiness Limitations,” that called for the repetitive eddy-current spar inspections. Somehow Cessna persuaded the Wichita ACO to approve this amendment—something the ACO really shouldn’t have done, as you shall see.

Cessna then publicly took the position that compliance with the repetitive eddy-current spar inspections was compulsory because those inspections were now part of an FAA-approved Airworthiness Limitations Section (ALS). Indeed, FAR 91.403(c) compels aircraft owners to comply with mandatory replacement times, inspection intervals, and related procedures specified in an ALS. And FAR 43.16 compels maintenance personnel to perform any inspections or maintenance specified in an ALS precisely “by the book.”

David vs. Goliath?

SlingshotI first learned about this at the beginning of September 2014, when my colleague Paul New—owner of Tennessee Aircraft Services, Inc. (a well-known Cessna Piston Aircraft Service Center) and honored by the FAA in 2007 as National Aviation Maintenance Technician of the Year—discovered the new section 2B in the Cessna 210 service manual, and immediately realized its significance. Paul and I discussed the matter at length, and both felt strongly that Cessna’s actions could not be allowed to go unchallenged.

“If Cessna gets away with this,” I told Paul, “then any manufacturer will be able to effectively impose their own ADs whenever they want, bypassing the notice-and-comment protocol and the other safeguards built into the APA to protect the public from unreasonable government regulation.”

I helped Paul draft a letter to the Rulemaking Division (AGC-200) of the FAA’s Office of General Counsel, questioning the retroactive enforceability of Cessna’s newly minted ALS against Cessna 210s that were manufactured prior to the date the ALS was published (i.e., all of them, given that Cessna 210 production ceased in 1986). Our letter questioned whether Cessna could do what it was trying to do (i.e., make the eddy-current inspections compulsory) within the confines of the APA. We asked AGC-200 to issue a formal Letter of Interpretation (LOI) of the thorny regulatory issues that Cessna’s unprecedented actions raised.

And then we waited. And waited.

AGC-200 initially advised us that they had a four-month backlog of prior requests before they would be able to respond to our request. In fact, it took seven months. It turns out that our letter questioning the enforceability of Cessna’s ALS opened a messy can of worms. AGC-200 assigned two attorneys to draft the FAA’s response, and they wound up having to coordinate with AFS-300 (Flight Standards Maintenance Division), AIR-100 (Aircraft Certification Division), ACE-100 (Small Airplane Directorate), and of course ACE-115W (Wichita Aircraft Certification Office) who mistakenly approved Cessna’s ALS in the first place.

FAA Legal Does the Right Thing

FAA Headquarters

FAA Headquarters
800 Independence Ave.
Washington DC

Finally, on May 21, 2015, AGC-200 issued the Letter of Interpretation (LOI) that we requested. It was five pages long, and was everything we hoped it would be and more. It slammed shut the “rulemaking backdoor” that Cessna had been attempting to use to bypass the AD process, locked it once and for all, threw away the key, and squirted epoxy glue in the lock for good measure. You can read the entire LOI in all its lawyerly glory, but here’s the CliffsNotes version of the letter’s key bullet points:

  • Under FAR 21.31(c), an ALS is part of an aircraft’s type design.
  • The only version of an ALS that is mandatory is the version that was included in the particular aircraft’s type design at the time it was manufactured.
  • Absent an AD or other FAA rule that would make the new replacement times and inspection intervals retroactive, Cessna’s “after-added” ALS is not mandatory for persons who operate or maintain the Model 210 aircraft, the design and production of which predate the new ALS addition. The “requirements” set forth in the ALS would only be mandatory for aircraft manufactured after the ALS was issued. And of course, production of the Cessna 210 ceased in 1986.
  • If operational regulations were interpreted as imposing an obligation on operators and maintenance providers to comply with the latest revision of a manufacturer’s document, manufacturers could unilaterally impose regulatory burdens on operators of existing aircraft. This would be legally objectionable in that the FAA does not have legal authority to delegate its rulemaking authority to manufacturers. Furthermore, “substantive rules” can be adopted only in accordance with the rulemaking section of the APA (5 U.S.C. § 553) which does not grant rulemaking authority to manufacturers. To comply with these statutory obligations, the FAA would have to engage in its own rulemaking to mandate the manufacturer’s document, as it does when it issues ADs.

The bottom line is this: Manufacturers of certificated aircraft* are not permitted to impose regulatory burdens on aircraft owners by changing the rules in the middle of the game. Only the FAA may do that, and only through proper rulemaking action that complies with the APA (including its notice-and-comment provisions and other safeguards). If you ever encounter a situation where the manufacturer of your aircraft tries to do this, call their cards—the FAA lawyers will back you up.

*NOTE: The rules are completely different for S-LSAs.  The manufacturers of S-LSAs can do pretty much anything they like, and their word is the law. (A seriously flawed situation IMHO.)

The LOI concluded with the following surprising paragraph:

On February 19, 2015, the FAA’s Small Airplane Directorate sent a letter to Cessna that addressed some of the above issues, and pointed out the non-mandatory nature of the after-added ALS for the Model 210 aircraft. The FAA asked Cessna to republish the replacement times and inspections as recommendations that are encouraged, but optional, for those in-service aircraft, unless later mandated by an AD. To date [three months later –mb] Cessna has not provided a written response outlining its position on this matter.

Are we having fun yet?

A Self-Evident Solution

Monday, November 24th, 2014

Times are tough for general aviation, and we need a solid partner and advocate in Washington now more than ever. Unfortunately, the FAA is proving to be the exact opposite—a lead weight—and it’s becoming a big problem.

Complaining about the FAA has been a popular spectator sport for decades. I feel for those who work at the agency because most of the individuals I’ve interacted with there have been pleasant and professional. They often seem as hamstrung and frustrated with the status quo as those of us on the outside. In fact, I took my commercial glider checkride with an FAA examiner from the Riverside FSDO in 2004 and consider it a model of how practical tests should be run. So I’m not suggesting we toss the baby out with the bathwater.

But somewhere, somehow, as an organization, the inexplicable policy decisions, poor execution, and awful delays in performing even the most basic functions lead one to the conclusion that the agency is beset by a bureaucratic sclerosis which is grinding the gears of progress to a rusty halt on many fronts.

Let’s look at a few examples.

Example 1: Opposite Direction Approaches Banned

If you’re not instrument-rated, the concept of flying an approach in the “wrong direction” probably seems… well, wrong. But it’s not. For decades, pilots have flown practice approaches in VFR conditions for training purposes without regard for the wind direction. There are many logical reason for doing so: variety, the availability of a specific approach type, to practice circling to a different runway for landing, and so on. John Ewing, a professional instructor based on California’s central coast, described this as “going up the down staircase”.

For reasons no one has been able to explain (and I’ve inquired with two separate FSDOs in my area), this practice is no longer allowed at towered fields. Here’s what John wrote about the change:

…the FAA has decided that opposite direction approaches into towered airports are no longer allowed. To the uninitiated, practice approaches to a runway when there’s opposite direction traffic may seem inherently dangerous, but it is something that’s been done safely at many airports for as long as anyone can remember. One example in Northern California is Sacramento Executive where all the instrument approaches are to Runway 2 and 90% of the time Runway 20 is in use.

At KSAC, the procedure for handling opposite direction approaches is simple and has worked well (and without incident, to my knowledge): The tower instructs the aircraft inbound on the approach to start their missed approach (usually a climbing left turn) prior to the runway threshold and any traffic departing the opposite direct turns in the other direction.

For areas like the California Central Coast, the restriction on opposite direction instrument approaches has been in place since I arrived in June and it has serious implications for instrument flight training since the ILS approaches for San Luis Obispo, Santa Maria, and Santa Barbara are likely to be opposite direction 90% of the time. For a student to train to fly an ILS in a real aircraft, you need to fly quite a distance. Same goes for instrument rating practical tests that require an ILS because the aircraft is not equipped with WAAS GPS and/or there’s no RNAV approach available with LPV minima to a DA of 250 feet or lower.

The loss of opposite-direction approaches hurts efficiency and is going to increase the time and money required for initial and recurrent instrument training. As good as simulators are, there’s no substitute for the real world, especially when it comes to things like circling to land. Between the low altitude, slow airspeed, and division of attention between instruments and exterior references required for properly executing the maneuver, circling in low weather can be one of the most challenging and potentially hazardous aspects of instrument flying. If anything, we need more opportunities to practice this. Banning opposite-direction approaches only ensures we’ll do it less.

Example 2: The Third Class Medical

Eliminating the third class medical just makes sense. I’ve covered this before, but it certainly bears repeating: Glider and LSA pilots have been operating without formal medical certification for decades and there is no evidence I’m aware of to suggest they are any more prone to medical incapacitation than those of us who fly around with that coveted slip of paper in our pocket.

AOPA and EAA petitioned the government on this issue two years and nine months ago. The delay has been so egregious that the FAA Administrator had to issue a formal apology. Obviously pilots are clamoring for this, but we’re not the only ones:

Congress is getting impatient as well. In late August, 32 members of the House General Aviation Caucus sent a letter to Department of Transportation Secretary Anthony Foxx urging him to expedite the review process and permit the FAA to proceed with its next step of issuing the proposal for public comment. Early in September 11 Senators, who were all co-sponsors of a bill to reform the medical process, also asked the Department of Transportation to speed up the process.

So where does the proposed rule change now? It is someplace in the maze of government. Officially it is at the Department of Transportation. Questions to DOT officials are met with no response, telling us to contact the FAA. FAA officials comment that “it is now under executive review at the DOT.”

The rule change must also be examined by the Office of Management and Budget.

When the DOT and OMB both approve the proposal—if they do—it will be returned to the FAA, which will then put it out for public comment. The length of time for comments will probably be several months.

After these comments are considered, the FAA may or may not issue a rule change.

It occurs to me that by the time this process is done, it may have taken nearly as long as our involvement in either world war. Even then, there’s no guarantee we’ll have an acceptable outcome.

Example 3: Hangar Policy

The commonsense approach would dictate that as long as you’ve got an airplane in your hangar, you should be able to keep toolboxes, workbenches, American flags, a refrigerator, a golf cart or bicycle, or anything else you like in there. But the FAA once again takes something so simple a cave man could do it and mucks it up. The fact that the FAA actually considers any stage of building an airplane to be a non-aeronautical activity defies both logic and the English language. Building is the very essence of the definition. People who’ve never even been inside an airplane could tell you that. In my mind, this hangar policy is the ultimate example of how out of touch with reality the agency has become.

Example 4: Field Approvals

These have effectively been gone from aviation for the better part of a decade. It used to be that if you wanted to add a new WhizBang 3000 radio to your airplane, a mechanic could get it approved via a relatively simple, low-cost method called a field approval. For reasons nobody has even been able to explain (probably because there is no valid explanation), it became FAA policy to stop issuing these. If you want that new radio in your airplane, you’ll have to wait until there’s an STC for it which covers your aircraft. Of course, that takes a lot longer and costs a boatload of money, if it happens at all. But the FAA doesn’t care.

Homebuilts put whatever they want into their panels and you don’t see them falling out of the sky. Coincidence? I don’t think so.

Example 5: RVSM Approvals

Just to show you that it’s not only the light GA segment that’s suffering, here’s a corporate aviation example. The ability to fly in RVSM airspace—the area between FL290 and FL410—is very important. Being kept below FL290 is not only inefficient and bad for the environment, it also forces turbine aircraft into weather they would otherwise be able to avoid. The alternative is to fly at FL430 and above, which can mean leaving fuel and/or payload behind, or flying in a paperwork-induced coffin corner.

Unfortunately, RVSM approval requires a Letter of Authorization from the FAA. If the airplane is sold, the LOA is invalidated and the new owner has to go through the paperwork process with the FAA from step one. Even if the aircraft stays at the same airport, maintained by the same people, and flown by the same crew. If you so much as change the name of your company, the LOA is invalidated. If you sneeze or get a hangnail, they’re invalidated.

From AIN Online:

Early this year the FAA agreed to a streamlined process to handle RVSM LOA approvals, but for the operator of a Falcon 50 that is not the case. He told AIN that he has been waiting since April for an RVSM LOA.

Because the LOA hasn’t been approved, this operator can fly the Falcon 50 at FL290 or lower or at FL430 or above. On a hot day, a Falcon 50 struggles at FL430. “The other day ISA was +10,” he told AIN, “and we are just hanging there at 43,000 at about Mach 0.72. If we had turbulence we could have had an upset. We’re right there in the coffin corner. Somebody is going to get hurt.”

On another recent flight in the Falcon, “There was a line of storms in front of us. We’re at FL290. They couldn’t let us climb, and I was about to declare an emergency. I’m not going to run my airplane through a hailstorm. It’s turbulent and the passengers are wondering what’s going on.”

When forced to fly below FL290, the Falcon burns 60 percent more fuel, he said. The company’s three Hawkers have a maximum altitude of FL410, and LOA delays with those forced some flights to down to lower altitudes. “We had one trip in a Hawker before it received its RVSM LOA,” he added, “and they got the crap kicked out of them. Bobbing and weaving [to avoid thunderstorms] over Iowa, Minnesota and Nebraska in the springtime, you’re going to get your [butt] kicked.” The Hawker burns about 1,600 pph at FL370, but below FL290 the flow climbs to more than 2,000 pph.

It’s bad for safety and the FAA knows it. If they were able to process paperwork quickly, it might not be such an issue, but many operators find that it takes many months—sometimes even a year or more—to get a scrap of paper which should take a few minutes at most.

Show Me the Money

So what’s behind the all this? Americans love to throw money at a problem, so is this a budget cut issue? Perhaps the FAA is a terribly cash-starved agency that simply isn’t given the resources to do the jobs we’re asking of it.

According to the Department of Transportation’s Inspector General, that’s not the case. He testified before the House Committee on Transportation and Infrastructure earlier this week that the FAA’s budget has been growing even as traffic declines:

The growth of the agency’s budget has been unchecked, despite the managerial failings and the changes in the marketplace. Between 1996 and 2012, the FAA’s total budget grew 95 percent, from $8.1 billion to $15.9 billion. During that same period, the agency’s air traffic operations dropped by a fifth. As a result, taxpayers are now paying the FAA nearly twice as much to do only 80 percent of the work they were doing in the 1990s.

Over that same 16-year span, the FAA’s personnel costs, including salary and benefits, skyrocketed from $3.7 billion to $7.3 billion—a 98 percent increase—even though the agency’s total number of full-time workers actually fell 4 percent during that time.

Self-Evident Solutions

Okay, we’ve all heard the litany of issues. From the inability to schedule a simple checkride to big problems with NextGen development or the ADS-B mandate, you’ve probably got your own list. The question is, how do we fix the problem?

I think the answer is already out there: less FAA oversight and more self-regulation. Look closely at GA and you’ll see that the segments which are furthest from FAA interference are the most successful. The Experimental Amateur-Built (E-AB) sector and the industry consensus standards of the Light Sport segment are two such examples. The certified world? Well many of them are still building the same airframes and engines they did 70 years ago, albeit at several times the cost.

Just as non-commercial aviation should be free of the requirement for onerous medical certification, so too should it be free of the crushing regulatory weight of the FAA. The agency would make a far better and more effective partner by limiting its focus to commercial aviation safety, promoting general aviation, and the protection and improvement of our infrastructure.

Backdoor Rule Making?

Wednesday, September 24th, 2014

On February 10, 2014, the Cessna Aircraft Company did something quite unprecedented in the history of piston GA: It published a revision to the service manual for cantilever-wing Cessna 210-series airplanes that added three new pages to the manual. Those three pages constituted a new section 2B to the manual, titled “Airworthiness Limitations”:

Cessna 210 Service Manual Section 2B

This section purports to impose “mandatory replacement times and inspection intervals for components and aircraft structures.” It states that the new section is “FAA-Approved” and that compliance is required by regulation.

Indeed, FARs 91.403(c) and 43.16 both state  that if a manufacturer’s maintenance manual contains an Airworthiness Limitations section (ALS), any inspection intervals and replacement times prescribed in that ALS are compulsory. FAR 91.403(c) speaks to aircraft owners:

§91.403(c) No person may operate an aircraft for which a manufacturer’s maintenance manual or instructions for continued airworthiness has been issued that contains an Airworthiness Limitations section unless the mandatory replacement times, inspection intervals, and related procedures specified in that section … have been complied with.

and FAR 43.16 speaks to mechanics:

§43.16 Each person performing an inspection or other maintenance specified in an Airworthiness Limitations section of a manufacturer’s maintenance manual or Instructions for Continued Airworthiness shall perform the inspection or other maintenance in accordance with that section…

Sounds pretty unequivocal, doesn’t it? If the maintenance manual contains an ALS, any mandatory inspection intervals and replacement times have the force of law.

The new ALS in the Cessna 210 maintenance manual mandates eddy current inspection of the wing main spar lower caps. For most 210s, an initial spar inspection is required at 8,000 hours time-in-service, with recurring inspections required every 2,000 hours thereafter. However, for 210s operated in a “severe environment” the inspections are required  at 3,500 hours and every 500 hours thereafter:

Cessna 210 inspection times

For P210s, the new ALS also imposes a life limit of 13,000 hours on the windshield, side and rear windows, and ice light lens.

What’s wrong with this picture?

To be fair, the eddy current inspection is not that big a deal.  An experienced technician can do it in a few hours. The most difficult part is that most service centers have neither the eddy current test eequipment nor a trained and certificated non-destructive testing (NDT) technician on staff. So most Cessna 210 owners will need to fly their airplane to a specialty shop  Since most airplanes will need to do this only once every 2,000 hours and since most of them fly less than 200 hours per year, one could hardly classify this recurrent eddy current inspection as Draconian. Similarly, not too many P210s are likely to reach the 13,000-hour life window life limit.

No, the issue isn’t the spar cap inspection or window life limits themselves—it’s the extraordinary method by which Cessna is attempting to make them compulsory.

Normally, if the manufacturer of an aircraft, engine or propeller wants to impose a mandatory inspection interval or a mandatory replacement or overhaul time on the owners of its aeronautical product, the manufacturer goes to the FAA and requests that an Airworthiness Directive (AD) be issued. If the FAA agrees and decides to issue an AD, it does so by means of a formal rule-making process prescribed by the federal Administrative Procedure Act (APA). Ultimately, the AD is published in the Federal Register and becomes an amendment to Part 39 of thee FARs. That’s what gives the AD its “teeth” and makes it compulsory for aircraft owners to comply with it.

§91.403(a) The owner or operator of an aircraft is primarily responsible for maintaining that aircraft in an airworthy condition, including compliance with part 39 of this chapter.

The APA governs the way that administrative agencies of the federal government (including the FAA) may propose and establish regulations. It has been called “a bill of rights” for Americans whose affairs are controlled or regulated by federal government agencies. The APA requires that before a federal agency can establish a new regulation, it must publish a notice of proposed rule making (NPRM) in the Federal Register, provide members of the public who would be impacted by the proposed regulation an opportunity to submit comments, and then take those comments seriously in making its final rule. The APA also establishes rights of appeal if a person affected by the regulation feels it is unjust or should be waived.

Because of the APA and other federal statutes, it is difficult for the FAA to issue ADs arbitrarily or capriciously. The agency first has to demonstrate that a bona fide unsafe condition exists, and that its frequency and severity of the safety risk rises to the level that makes rule making appropriate. It has to estimate the financial impact on affected owners. It has to provide a public comment period, give serious consideration to comments submitted, and respond to those comments formally when issuing its final rule.

As someone who has been heavily involved in numerous AD actions on behalf of various alphabet groups, I can tell you that the notice-and-comment provisions of the APA is extremely important, and that concerted efforts by aircraft owners and their representative industry organizations have often had great impact on the final outcome.

Through the back door?

That’s what makes Cessna’s action last February so insidious.

The addition of an Airworthiness Limitations section to the Cessna 210 maintenance manual was done without going through the rule making process. There was no NPRM and no comment period. Affected owners never had an opportunity to challenge the need for eddy current inspections of their wing spars. Cessna was never required to demonstrate that a genuine unsafe condition exists, nor weigh the cost impact against the safety benefit.Cessna 210 service manual By adding an ALS to the maintenance manual rather than ask the FAA to issue an AD, Cessna is attempting to bypass the APA-governed AD process and impose its will on aircraft owners through the back door.

Granted that the initial contents of the new ALS is not excessively burdensome. But if Cessna’s action is allowed to go unchallenged, it could set a terrible precedent. It would mean that any aircraft, engine or propeller manufacturer could retroactively impose its will on aircraft owners.

And if that happens, Katy bar the (back) door!

That’s why I’ve been working with my colleague Paul New—owner of Tennessee Aircraft Services, Inc. and honored by the FAA in 2007 as National Aviation Maintenance Technician of the Year—to challenge what Cessna is doing. On September 15th, Paul sent a letter that we jointly drafted to Mark  W. Bury (AGC-200), the FAA’s top regulations lawyer in its Office of General Counsel at FAA headquarters, asking him to issue a formal letter of interpretation as to whether compliance with the so-called mandatory inspection intervals set forth in section 2B of the Cessna 210 maintenance manual is actually required by regulation. We specifically ask Mr. Bury to rule on the question of whether retroactive enforcement of such a maintenance manual amendment by the FAA would constitute an APA violation.

The wheels of justice turn slowly at FAA Headquarters. We have been advised that AGC-200 has a four-month backlog of requests for letters of interpretation, so our request probably will not be looked at until the first quarter of 2015. But at least our request is in the queue. I am cautiously optimistic that AGC-200 will see things the way Paul and I see them, and will rule that a manufacturer’s publication of an ALS cannot be retroactively enforceable against aircraft owners unless the FAA issues an AD making it so.

Trust Us — We’re Professionals

Wednesday, June 11th, 2014

I’ve seen some ill-conceived policies emanate from the FAA over the course of my professional flying career. Some diktats are just busy work, while others fail to achieve an otherwise admirable end. But the worst are those that create the very hazard they are supposed to prevent.

Case in point: the recent adoption of 14 CFR 121.542(d), which prohibits the use of any personal electronic devices in flight. According to the FAA, this rule is “intended to ensure that non-essential activities do not affect flight deck task management or cause a loss of situational awareness during aircraft operation.”

Sounds great on the surface, doesn’t it? I mean, who could possibly oppose a rule which the Feds ostensibly see as the aeronautical equivalent of a ban on texting while driving? Keeping distractions at bay and pilots focused on flying has got to be a wonderful enhancement for safety.

But it’s not. The flight profiles of airlines, cargo haulers, charter companies, fractionals, corporate flight departments, and even private GA operators often dictate long stretches of straight-and-level flight with the autopilot on. Surely the FAA is aware of this. Now add in circadian rhythm issues associated with overnight flights, a dark cockpit with minimal radio traffic, and a flight crew pairing who have run out of things to talk about. There’s nothing to do but stare off into the inky darkness for hour upon hour. It’s a recipe for falling asleep.

Say what you will about distractions on the flight deck, but I’d much rather see a pilot peruse an issue of AOPA Pilot while in cruise than to have that individual zoned out or inadvertently napping. For one thing, the process of waking up takes time, whereas an alert human need only change focus. We already do that dozens of times on every flight anyway. Check in on the engine instruments, then answer a question from a passenger, then look out the window, then consult a chart. We do this all day long.

Is there much difference between reading a magazine and delving into the minutia of some random page of the Jeppesen manual when they’re both a form of busy work to keep the mind engaged during slow periods in cruise? I sincerely doubt a roundtable of experts in automation and human factors would have come up with a PED ban.

I can understand prohibiting them below, say, 10,000′ when the sterile cockpit rule is in effect. That’s a busy time for pilots, and non-essential items are naturally stowed at that point anyway. But electronic devices in and of themselves can be helpful in staving off the ultimate distraction. “Flight to Safety” author and Airbus pilot Karlene Petitt said it best:

Numerous studies have shown that one of the tips to help fall to sleep is to NOT watch television or work on your computer at a minimum of an hour before bedtime. The light suppresses melatonin production and stimulates brain activity. I’m not sure about you, but I want my pilots alert with stimulated brains. Give them something to do to keep them awake.

As many of you have probably noted, this rule is located in Part 121 and therefore only applies to scheduled airlines. From maintenance requirements to medical certification, their regs are the strictest around, so perhaps this seems much ado about nothing for a general aviation audience. But the FAA is of the opinion that this limitation should reach a lot further than United and Delta:

Recommended Actions: This prohibition on personal use of electronic devices on the flight deck in the final rule is applicable only to operations under part 121. However, Directors of Safety and training managers for all operators under parts 135 and 125, as well as part 91K, are encouraged to include operating procedures in their manuals and crewmember training programs prohibiting flightcrew members from using such devices for personal use during aircraft operation.

Will this eventually reach down to Part 91? Who knows. Even if it doesn’t, the real problem is that the FAA is spoon-feeding each and every individual action and prohibition to us without making allowances for the differences inherent in each type of operation. One-size-fits-all is wonderful for tube socks and scarves, but when it comes to flight safety, it’s just bad policy.

The smart way to go about this would be to leave it to the individual company, flight department and/or individual to determine what PED policy best serves the cause of safety. If you’re Southwest Airlines or a charter operator company flying VLJs, you probably aren’t flying long-haul trips and might be fine with reasonable PED limitations. Certainly using them below 10,000′ could be prohibited. But if you’re flying international cargo in a jumbo jet or hopping continents in a Global 5000 on legs of twelve or thirteen hours? That personal electronic device could be incredibly helpful in maintaining alertness.

Whether it’s a vocation or an avocation, pilots are a professional lot who can be trusted to make their own decisions about portable electronic devices.

Quest for a TBO-Free Engine

Tuesday, May 13th, 2014

“It just makes no sense,” Jimmy told me, the frustration evident in his voice. “It’s unfair. How can they do this?”

Jimmy Tubbs, ECi’s legendary VP of Engineering

Jimmy Tubbs, ECi’s legendary VP of Engineering

I was on the phone with my friend Jimmy Tubbs, the legendary Vice President of Engineering for Engine Components Inc. (ECi) in San Antonio, Texas. ECi began its life in the 1940s as a cylinder electroplating firm and grew to dominate that business. Starting in the mid-1970s and accelerating in the late 1990s—largely under Jimmy’s technical stewardship—the company transformed itself into one of the two major manufacturers of new FAA/PMA engine parts for Continental, Lycoming and Pratt & Whitney engines (along with its rival Superior Air Parts).

By the mid-2000s, ECi had FAA approval to manufacture thousands of different PMA-approved engine parts, including virtually every component of four-cylinder Lycoming 320- and 360-series engines (other than the Lycoming data plate). So the company decided to take the next logical step: building complete engines. ECi’s engine program began modestly with the company offering engines in kit form for the Experimental/Amateur-Built (E-AB) market. They opened an engine-build facility where homebuilders could assemble their own ECi “Lycoming-style” engines under expert guidance and supervision. Then in 2013, with more than 1,600 kit-built engines flying, ECi began delivering fully-built engines to the E-AB market under the “Titan Engines” brand name.

Catch 22, FAA-style

ECi’s Titan Exp experimental engine

A Titan engine for experimental airplanes.
What will it take to get the FAA to certify it?

Jimmy is now working on taking ECi’s Titan engine program to the next level by seeking FAA approval for these engines to be used in certificated aircraft. In theory, this ought to be relatively easy (as FAA certification efforts go) because the Titan engines are nearly identical in design to Lycoming 320 and 360 engines, and almost all the ECi-built parts are already PMA approved for use in Lycoming engines. In practice, nothing involving the FAA is as easy as it looks.

“They told me the FAA couldn’t approve an initial TBO for these engines longer than 1,000 hours,” Jimmy said to me with a sigh. He had just returned from a meeting with representatives from the FAA Aircraft Certification Office and the Engine & Propeller Directorate. “I explained that our engines are virtually identical in all critical design respects to Lycoming engines that have a 2,000-hour TBO, and that every critical part in our engines is PMA approved for use in those 2,000-hour engines.”

“But they said they could only approve a 1,000-hour TBO to begin with,” Jimmy continued, “and would consider incrementally increasing the TBO after the engines had proven themselves in the field. Problem is that nobody is going to buy one of our certified engines if it has only a 1,000-hour TBO, so the engines will never get to prove themselves. It makes no sense, Mike. It’s not reasonable. Not logical. Doesn’t seem fair.”

I certainly understood where Jimmy was coming from. But I also understood where the FAA was coming from.

A brief history of TBO

To quote a 1999 memorandum from the FAA Engine & Propeller Directorate:

The initial models of today’s horizontally opposed piston engines were certified in the late 1940s and 1950s. These engines initially entered service with recommended TBOs of 500 to 750 hours. Over the next 50 years, the designs of these engines have remained largely unchanged but the manufacturers have gradually increased their recommended TBOs for existing engine designs to intervals as long as 2,000 hours. FAA acceptance of these TBO increases was based on successful service, engineering design, and test experience. New engine designs, however, are still introduced with relatively short TBOs, in the range of 600 hours to 1,000 hours.

From the FAA’s perspective, ECi’s Titan engines are new engines, despite the fact that they are virtually clones of engines that have been flying for six decades, have a Lycoming-recommended TBO of 2,000 hours, and routinely make it to 4,000 or 5,000 hours between overhauls.

Is it any wonder we’re still flying behind engine technology designed in the ‘40s and ‘50s? If the FAA won’t grant a competitive TBO to a Lycoming clone, imagine the difficulties that would be faced by a company endeavoring to certify a new-technology engine. Catch 22.

Preparing for an engine test cell endurance run.

Incidentally, there’s a common misconception that engine TBOs are based on the results of endurance testing by the manufacturer. They aren’t. The regulations that govern certification of engines (FAR Part 33) require only that a new engine design be endurance tested for 150 hours in order to earn certification. Granted, the 150-hour endurance test is fairly brutal: About two-thirds of the 150 hours involves operating the engine at full takeoff power with CHT and oil temperature at red-line. (See FAR 33.49 for the gory details.) But once the engine survives its 150-hour endurance test, the FAA considers it good to go.

In essence, the only endurance testing for engine TBO occurs in the field. Whether we realize it or not, those of us who fly behind piston aircraft engines have been pressed into service as involuntary beta testers.

What about a TBO-free engine?

“Jimmy, this might be a bit radical” I said, “but where exactly in FAR Part 33 does it state that a certificated engine has to have a recommended TBO?” (I didn’t know the answer, but I was sure Jimmy had Part 33 committed to memory.)

“Actually, it doesn’t,” Jimmy answered. “The only place TBO is addressed at all is in FAR 33.19, where it says that ‘engine design and construction must minimize the development of an unsafe condition of the engine between overhaul periods.’ But nowhere in Part 33 does it say that any specific overhaul interval must be prescribed.”

“So you’re saying that engine TBO is a matter of tradition rather than a requirement of regulation?”

“I suppose so,” Jimmy admitted.

“Well then how about trying to certify your Titan engines without any TBO?” I suggested. “If you could pull that off, you’d change our world, and help drag piston aircraft engine maintenance kicking and screaming into the 21st century.”

An FAA-inspired roadmap

I pointed out to Jimmy that there was already a precedent for this in FAR Part 23, the portion of the FARs that governs the certification of normal, utility, aerobatic and commuter category airplanes. In essence, Part 23 is to non-transport airplanes what Part 33 is to engines. On the subject of airframe longevity, Part 23 prescribes an approach that struck me as being also appropriate for dealing with engine longevity.

Since 1993, Part 23 has required that an applicant for an airplane Type Certificate must provide the FAA with a longevity evaluation of metallic  wing, empennage and pressurized cabin structures. The applicant has the choice of three alternative methods for performing this evaluation. It’s up to the applicant to choose which of these methods to use:

  • “Safe-Life” —The applicant must define a “safe-life” (usually measured in either hours or cycles) after which the structure must be taken out of service. The safe-life is normally established by torture-testing the structure until it starts to fail, then dividing the time-to-failure by a safety factor (“scatter factor”) that is typically in the range of 3 to 5 to calculate the approved safe-life of the structure. For example, the Beech Baron 58TC wing structure has a life limit (safe-life) of 10,000 hours, after which the aircraft is grounded. This means that Beech probably had to torture-test the wing spar for at least 30,000 hours and demonstrate that it didn’t develop cracks.
  • “Fail-Safe” —The applicant must demonstrate that the structure has sufficient redundancy that it can still meet its ultimate strength requirements even after the complete failure of any one principal structural element. For example, a three-spar wing that can meet all certification requirements with any one of the three spars hacksawed in half would be considered fail-safe and would require no life limitation.
  • “Damage Tolerance” —The applicant must define a repetitive inspection program that can be shown with very high confidence to detect structural damage before catastrophic failure can occur. This inspection program must be incorporated into the Airworthiness Limitations section of the airplane’s Maintenance Manual or Instructions for Continued Airworthiness, and thereby becomes part of the aircraft’s certification basis.

If we were to translate these Part 23 (airplane) concepts to the universe of FAR Part 33 (engines):

  • Safe-life would be the direct analog of TBO; i.e., prescribing a fixed interval between overhauls.
  • Fail-safe would probably be impractical, because an engine that included enough redundancy to meet all certification requirements despite the failure of any principal structural element (e.g., a crankcase half, cylinder head or piston) would almost surely be too heavy.
  • Damage tolerance would be the direct analog of overhauling the engine strictly on-condition (based on a prescribed inspection program) with no fixed life limit. (This is precisely what I have been practicing and preaching for decades.)

How would it work?

SavvyAnalysis chart

Engine monitor data would be uploaded regularly to a central repository for analysis.

Jimmy and I have had several follow-on conversations about this, and he’s starting to draft a detailed proposal for an inspection protocol that we hope might be acceptable to the FAA as a basis of certifying the Titan engines on the basis of damage tolerance and eliminate the need for any recommended TBO. This is still very much a work-in-progress, but here are some of the thoughts we have so far:

  • The engine installation would be required to include a digital engine monitor that records EGTs and CHTs for each cylinder plus various other critical engine parameters (e.g., oil pressure and temperature, fuel flow, RPM). The engine monitor data memory would be required to be dumped on a regular basis and uploaded via the Internet to a central repository prescribed by ECi for analysis. The uploaded data would be scanned automatically by software for evidence of abnormalities like high CHTs, low fuel flow, failing exhaust valves, non-firing spark plugs, improper ignition timing, clogged fuel nozzles, detonation and pre-ignition. The data would also be available online for analysis by mechanics and ECi technical specialists.
  • At each oil-change interval, the following would be required: (1) An oil sample would be taken for spectrographic analysis (SOAP) by a designated laboratory, and a copy of the SOAP reports would be transmitted electronically to ECi; and (2) The oil filter would be cut open for inspection, digital photos of the filter media would be taken, when appropriate the filter media would be sent for scanning electron microscope (SEM) evaluation by a designated laboratory, and the media photos and SEM reports would be transmitted electronically to ECi.
  • At each annual or 100-hour inspection, the following would be required: (1) Each cylinder would undergo a borescope inspection of the valves, cylinder bores and piston crowns using a borescope capable of capturing digital images, and the borescope images would be transmitted electronically to ECi; (2) Each cylinder rocker cover would be removed and digital photographs of the visible valve train components would be transmitted electronically to ECi; (3) The spark plugs would be removed for cleaning/gapping/rotation, and digital photographs of the electrode ends of the spark plugs would be taken and transmitted electronically to ECi; and (4) Each cylinder would undergo a hot compression test and the test results be transmitted electronically to ECi.

The details still need to be ironed out, but you get the drift. If such a protocol were implemented for these engines (and blessed by the FAA), ECi would have the ability to keep very close tabs on the mechanical condition and operating parameters of each its engines—something that no piston aircraft engine manufacturer has ever been able to do before—and provide advice to each individual Titan engine owner about when each individual engine is in need of an overhaul, teardown inspection, cylinder replacement, etc.

Jimmy even thinks that if such a protocol could be implemented and approved, ECi might even be in a position to offer a warranty for these engines far beyond what engine manufacturers and overhaul shops have been able to offer in the past. That would be frosting on the cake.

I’ve got my fingers, toes and eyes crossed that the FAA will go along with this idea of an engine certified on the basis of damage tolerance rather than safe-life. It would be a total game-changer, a long overdue nail in the coffin of the whole misguided notion that fixed-interval TBOs for aircraft engines make sense. And if ECi succeeds in getting its Titan engine certified on the basis of condition monitoring rather than fixed TBO, maybe Continental and Lycoming might jump on the overhaul-on-condition bandwagon. Wouldn’t that be something?

The Journey of a Thousand Miles

Wednesday, March 19th, 2014

For as long as I can remember, “no news” has been “good news” when it comes to rules and regulations in the world of aviation. From field approval policy to sleep apnea to CBP searches and security theatre, any diktat emanating from Washington or Oklahoma City was sure to involve increasing demands of time and money while diminishing the usefulness and enjoyment of general aviation. That was the trend.

What a breath of fresh air it is, then, to hear of a well-suported and coordinated effort in both houses of Congress to enact legislation which would eliminate formal medical certification for many aviators.

Like the House bill, the new Senate legislation would exempt pilots who make noncommercial VFR flights in aircraft weighing up to 6,000 pounds with no more than six seats from the third-class medical certification process. Pilots would be allowed to carry up to five passengers, fly at altitudes below 14,000 feet msl, and fly no faster than 250 knots.

When the bill was first offered in the House of Representatives as the General Aviation Pilot Protection Act, it seemed like a long shot. Congress is not a known for acting boldly to free Americans from the heavy yoke of regulation, so one could be forgiven for not getting their hopes up. But now things are different: there’s a matching bill in the Senate, the House iteration has 52 co-sponsors, and the Congressional General Aviation Caucus has grown to more than 250 members.

Is it a done deal, then? Not at all. There’s no guarantee of passage or that President Obama would even sign the bill into law. But the sponsors and caucus members represent a good mix from across the political spectrum, and there are no special interests of any significance who benefit from the medical certification machinery, so I believe the prospects are encouraging.

This Pilot Protection Act is exceptional for several reasons. First, it goes far beyond even the historically pie-in-the-sky proposal fronted collectively by AOPA and EAA. When was the last time that happened? I can’t recall a single example. Typically we’ll ask for X and end up feeling extraordinary fortunate to get even half of it.

That AOPA/EAA submission, by the way, has languished on the FAA’s desk for two years and has yet to be acted upon by the agency. If one needed proof of just how sclerotic the bureaucratic machine has become, this is it. The delay is egregious enough to have warranted an official apology from FAA Administrator Huerta.

Just as importantly, though, is the fact that this is a legislative move rather than a regulatory one. It’s an important distinction, because regulations are instituted with relative impunity by agencies like the FAA, while Congress passes laws that are not nearly as vulnerable to bureaucratic vagaries. In other words, if the FAA instituted the very same change in medical certification through regulatory channels, they could alter or reverse those improvements just as easily. A law, on the other hand, should prove far more durable since the Feds must comply with it whether they like it or not.

It’s a shame that this common-sense change requires a literal Act of Congress. And what does it say about the FAA that a body with 9% approval rating is coming to the rescue of the private pilot? Were it to remain in the FAA’s corner, this medical exemption would probably never see the light of day. I don’t just mean that it would not be approved, I mean it would never even be acted upon at all.

There is a certain schadenfreude which comes from watching the FAA, which is known for soliciting comments from the aviation industry only to ignore that input, suffer the same fate at the hands of the House and Senate. My only question is: what took so long? The last time Congress lent the industry a helping hand was with the General Aviation Revitalization Act. That was in 1994 — twenty years ago. While I’m thankful they’re finally getting off the bench and into the game, this boost is long overdue. I sincerely hope they will not only see it through, but look for other ways to help bring a uniquely American industry back from the brink.

An easing of the medical certification requirements will not fix all of GA’s woes. But if the journey of a thousand miles begins with a single step, perhaps this will at least get us headed in the right direction.

One final note: if you haven’t called your Representative and Senators to express strong support for H.R. 3708 and S. 2103, respectively, please do so! Unlike FAA employees, these folks are up for re-election in eight months. The closer we get to November, the more likely they are to listen.

Time for a Shakeup

Wednesday, January 22nd, 2014

Last November the Federal Air Surgeon, Fred Tilton, unilaterally declared that mandatory screening for obstructive sleep apnea (OSA) in pilots would begin “shortly.”

The initial BMI threshold would be 40, with an ominous vow that “once we have appropriately dealt with every airman examinee who has a BMI of 40 or greater, we will gradually expand the testing pool by going to lower BMI measurements until we have identified and assured treatment for every airman with OSA.”

Tilton noted that “up to 30% of individuals with a BMI less than 30 have OSA”. Between the fact that people with normal-range BMIs have been diagnosed with sleep apnea and his apparent zest for uncovering “every” airman with OSA, logic dictates that the eventual threshold would be in the mid-20s, if not lower.

The aviation community was up in arms pretty quickly, and for good reason. For one thing, the mid-20s are the upper end of the normal BMI range. It’s also worth noting that even the World Health Organization acknowledges that the BMI scale was never designed for application to individual people, but rather for statistical modeling of entire populations. BMI is based solely on weight and height, so it does not account for differing body types. Nor does it obey the law of scaling, which dictates that mass increases to the 3rd power of height.

In plain English, a bigger person will always have a higher BMI even if they are not any fatter. This penalizes tall individuals, as well as bodybuilders and athletes who are in prime physical shape by assigning them absurdly high BMI numbers. Likewise, short people are misled into thinking that they are thinner than they are.

Nevertheless, Tilton declared his intention to press on anyway, without any industry input or following established rulemaking procedures despite the fact that this scavenger hunt would break invasive new ground in aeromedical certification.

Then, even the Aviation Medical Examiners objected to the new policy, noting that “no scientific body of evidence has demonstrated that undiagnosed obesity or OSA has compromised aviation safety” and that providing long term prognoses is not part of the FAA’s job. The medical certification exists soley to “determine the likelihood of pilot incapacitation for the duration of the medical certificate.”

Without the support of the civil aviation medicine community, Tilton was literally standing alone. At that point, Congress jumped into the fray on the pilot community’s behalf and eventually forced the Air Surgeon to back down… for now.

While the battle may have been won, the war is far from over. Mark my words, this is not the last you’ll hear about this bogeyman. Tilton may be forced to consult with the aviation community or follow a rulemaking procedure of some sort, but his zeal for the topic means OSA screening will be back in one form or another.

To effectively combat such overreach, we’ve got to attack the problem from its true source. In this case, the Air Surgeon’s ammunition came from National Transportation Safety Board recommendations issued in the wake of a 2008 regional airline flight which overflew its destination by 26 miles when both pilots fell asleep.

… the National Transportation Safety Board recommends that the Federal Aviation Administration:

Modify the Application for Airman Medical Certificate to elicit specific information about any previous diagnosis of obstructive sleep apnea and about the presence of specific risk factors for that disorder. (A-09-61)

Implement a program to identify pilots at high risk for obstructive sleep apnea and require that those pilots provide evidence through the medical certification process of having been appropriately evaluated and, if treatment is needed, effectively treated for that disorder before being granted unrestricted medical certification. (A-09-62)

The NTSB serves a useful purpose in assisting transportation disaster victims and investigating accidents, but when it comes to safety recommendations, the agency operates in a kind of vacuum, divorced from some of the most pressing realities of the modern general aviation world. The reason is simple: their mission statement. It calls for the Board to “independently advance transportation safety” by “determining the probable cause of the accidents and issuing safety recommendations aimed at preventing future accidents.”

While there’s nothing objectionable about their mission, note how there’s no mention of the cost these recommendations impose on those of us trying to make a go of it in the flying industry. Since it’s not part of their mission statement, it is not a factor the Board takes into account. It doesn’t even appear on their radar. The Board’s federal funding and their lack of rulemaking authority negates any such considerations. So a sleep apnea study costs thousands of dollars — so what? If it prevents one pilot from falling asleep in the cockpit in next half century, it’s well worth the decimation to an already down-and-out sector of the economy.

That’s been the logic for the NTSB since it was conceived by the Air Commerce Act in 1926. It worked well when aerospace safety was at its nadir — but that was nearly ninety years ago. As air transportation evolved during the 20th century, attempts at increasing safety have reached the point of diminishing returns and exponentially increasing cost. At some point the incessant press toward a perfect safety record will make aviating such a sclerotic activity that it will, in effect, cease.

It’s a problem for any industry, and it’s especially so for one that’s teetering on the edge of oblivion the way ours is. The good news is that this can be fixed. It’s time to shake things up at the NTSB by revising their mission statement to make cost analysis a major part of the Board’s function. They should work with stakeholders to carefully study the long-term effect each recommendation would have on the health and size of the aviation industry before they make it.

For what it’s worth, the FAA needs this mission statement adjustment just as much as the NTSB. More, in fact, because the NTSB can recommend anything it wishes, but the regulatory power to act upon those suggestions is outside their purview and rests with the Federal Aviation Administration. From medical approval to burdensome aircraft certification rules, the FAA is the hammer. We have to start somewhere, though, and the NTSB is in many ways the top of the heap, the place where these ideas get their start. It would be nice to see the industry’s lobbyists in Washington, D.C. suggest such a bill to members of Congress.

One final thought: if government’s power really does derive from the “consent of the governed”, this should be an idea even the NTSB (and FAA) can get behind. Otherwise, they may convene one day and find that there’s not much of an industry left for them to prescribe things to.