Archive for the ‘Trends and analysis’ Category

Flying Backward

Wednesday, February 11th, 2015

“Aviation in itself is not inherently dangerous. But to an even greater degree than the sea, it is terribly unforgiving of any carelessness, incapacity or neglect.”

Aviation insurance pioneer A. G. Lamplugh uttered that oft-quoted phrase more than eighty years ago, and it’s as valid today as it was back then. Like Newton’s Laws of Physics, it’s one of the basic, unchanging truths about flying: certain things simply must be done properly if we’re to avoid disaster in the air. One of the best examples would be dealing with a low-altitude engine failure.

Last week’s TransAsia ATR-72 accident is a potent reminder of this aphorism. While we don’t know the cause yet and probably won’t know the whole story for a year or more, it got me thinking about how oddly things are done in aviation sometimes. For example, airline pilots move “up” the food chain from turboprops to jets. If safety is the paramount concern, that’s backwards. Shouldn’t the most experienced pilots should be exercising their skills on the most challenging aircraft rather than the least?

While jets certainly have their pitfalls and perils, a low-altitude engine failure is generally more challenging in a turboprop. The dead engine’s propeller creates tremendous drag until it’s properly secured. Many multi-engine turboprops are equipped with mechanisms to automatically feather the offending prop, but if that system doesn’t function properly, has been deferred, or simply doesn’t exist, the pilot is faced with six levers in close proximity, only one of which will do the trick. It’s easy to pull the wrong one.

Worse yet, if the craft has an autofeather system, the pilot would logically expect it to function as advertised. He or she would have to first detect the lack of feathering, then run the identify-verify-feather drill. Unlike training scenarios, there’s a major surprise factor at play as well. In a simulator, is anyone really surprised when the engine quits? Of course not. In the real world, pilots make thousands of flights where a powerplant doesn’t fail. As much as you tell yourself with each takeoff that “this could be the one”, empirical evidence in the form of a pilot’s own experience suggests against it. That makes preparation for a low-altitude emergency a constant battle with oneself. Are we always honest about how we’re doing in that fight? Probably not.

When I flew ex-military U-21A turboprops for a government contractor, we did all our training in the actual aircraft. I’ll never forget how marginal the aircraft’s performance was, even when engine failures were handled properly and expediently. We would fly a single-engine approach into Catalina Airport, where the missed approach procedure takes you toward the center of the island and some fairly high terrain. On one training flight the autofeather system initially worked as advertised, but then started to slowly unfeather.

Turboprop flying also comes with increased risk exposure due to the flight profile. A jet pilot might fly one or two legs a day versus five, six, or seven flown by the guy in the turboprop. With more legs comes an increased statistical opportunity for that engine to quit on takeoff. Turboprops also fly at lower altitudes where they tend to be in weather rather than above it.

The reciprocating twin pilot has it even worse when it comes to performance. Most of them have no guarantee of any climb performance at all on one engine, especially with the gear down, and few are equipped with automatic feathering systems. Yet that’s where we all start out.

Contrast this with engine failure in the modern jet, where the pilot need do nothing but raise the landing gear and keep the nose straight. In my aircraft, at least, we don’t even add power on the remaining engine. Unless the plane is literally on fire, we just climb straight out for a minute or two, gaining altitude and doing… nothing. No checklist to run, and only two levers in the throttle quadrant rather than six.

John Deakin described the contrast between prop and jet quite colorfully when he transitioned into the G-IV:

“If you hear a Gulfstream pilot whine about poor performance when high, hot, and heavy, please understand, he’s whining about less than 1,000 feet per minute on one engine. I sometimes feel like slapping a chokehold on, and dragging one of these guys out to the old C-46, loaded, on a hot day, and make him do an engine failure on takeoff, where he’d be lucky to get 50 feet per minute.”

There are other places where you can see this same phenomenon at work in aviation. Consider the world of flight instruction. The least experienced CFIs typically start off by teaching primary students. Again, that’s backwards. It would seem more logical to start instructors off with checkouts and endorsements for experienced pilots or commercial certificate training. Putting the best, most experienced CFIs with the neophytes might help accelerate their progress and alleviate the high student pilot drop-out rate.

The Law of Primacy — something every CFI candidate learns about — tells us that “the state of being first, often creates a strong, almost unshakable, impression. Things learned first create a strong impression in the mind that is difficult to erase. For the instructor, this means that what is taught must be right the first time.” Primary flight training literally sets the foundation of an aviator’s flying life, to say nothing of the fact that teaching primary students is one of the most difficult jobs a CFI can undertake. So why is this critical task mainly entrusted to the newest, least experienced instructors?

The answer to these questions usually comes down to money. The almighty dollar frequently plays a powerful role in explaining the unexplainable in aviation. While it would be unrealistic to deny the importance of financial concerns in defying gravity, whole sections of the aviation ecosystem run backwards and one can’t help but wonder if perhaps safety suffers because of it.

Data, Data … Who Has the Data … and What Will They Do With It?

Monday, January 26th, 2015

Whether an airplane slides off the side of the runway during takeoff or disappears behind some tall trees on final approach, the reaction is pretty universal. People want to know, “what happened?” In the heavy metal airplanes like Boeings, Airbus’ or Gulfstreams, the investigation of what went wrong begins by retrieving the flight data and cockpit voice recorders that typically survive almost every kind of mishap. The data on those recorders help investigators re-create the moments before the chaos began … what control was moved in which direction, where the power was set or what one pilot said to the other. The data becomes the basis for the Board’s final report that offers valuable insights to the industry, many that quickly make their way to the pilot training providers.

But on the GA side of flying, that kind data and analysis is almost non-existent. We need to fill that GA vacuum for the same reason large aircraft carry data recorders … to prevent the same accident from reoccurring.

Stratus 2Thanks to the glass avionics now standard on just about every production airplane in the U.S., the job of capturing operational data is becoming easier. Unknown to may pilots, both the Garmin and Avidyne avionics offer downloads of operational data by simply inserting an “SD” memory card in a front panel. ForeFlight users can also capture their flights on their iPad. Add a Stratus 2 from Sporty’s and pilots can download enough data to create a simulation in X-Plane. Imagine watching your performance as if you’d been flying alongside as your own wingman. Hook up an Iridium Go! to a Stratus 2 and you can download the data via satellite while the aircraft is still airborne. The University of North Dakota is already deep into testing data capture systems on its flight training fleet to better gauge both aircraft and pilot performance.

And not a moment too soon since the NTSB reminded us a few weeks ago that loss of control inflight (LOCI) is enough of a GA to land LOCI on the Board’s Top 10 List of Transportation worries for 2015.

Of course the real value in trend analysis evolves by analyzing thousands or even hundreds of thousands of flights. But will the GA industry take the steps needed to capture more data and, after scrubbing it clean of any identifying tags, share it with the world for analysis? The airlines and business aviation are beginning to learn the value of identifying these kinds of trends before an accident occurs.

A few stumbling blocks to using the data from today’s airplanes include worries about cost, privacy and enforcement. The cost issue is actually an easy one though, despite the huge requirement for ADS-B Out looming in 2020, because data capture isn’t required by the FAA. It’s just valuable information. The equipment is either already on board, or can be added pretty inexpensively. A Stratus 2 that sells for $899 and an Iridium Go! listing out at $799 represent the top of the line for data capture options. The Stratus also gives an aircraft ADS-B In capabilities at no extra charge. Many data capture options cost much less. The MITRE Corp. worked closely with the FAA to produce a handy app — called GAARD — you’ll find at iTunes store that is a pretty slick tool for basic data capturing just using your iPhone. Don’t be surprised when insurance companies begin offering discounts to pilots who monitor their data like auto insurers are trying right now.Iridium Go!

Certainly privacy and enforcement go hand in hand with everyone worrying about who might view their last flight and what action they might take. For the commercial and business carriers, service providers already exist that scrub the data of identifying information while they focus on the issues the data identifies pretty much the way we’ve grown accustomed to using the ASRS forms through NASA.

With the AOPA Air Safety Institute’s 2012-2013 Accident Scorecard chronicling 948 fixed-wing accidents in 2013 that cut short the lives of 165 people, I’d say we have our work cut out for us. The question is whether enough pilots will gather together to take advantage of a system that might help GA vanish from the NTSB’s list in the near future.

Who’s the Best Pilot?

Monday, December 22nd, 2014

One of the many iconic scenes (so much so that it recurs several times in the film) from The Right Stuff has astronaut Gordon Cooper asking his wife, “Who’s the best pilot you ever saw?” before answering his own question: “You’re lookin’ at him!” Gordo was telling a joke, of course, but it got me thinking about what constitutes a great pilot in the real world.

Accident statistics show that when light GA pilots try to operate on a firmly fixed schedule — for example, around the holidays — the risk level increases. AOPA recently published an Air Safety Alert to that effect, noting “a cluster of GA accidents occurring in close succession.”

Some of this probably has to do with the fact that the holiday season occurs in the winter for those of us living in the northern hemisphere. While the hot months have their own set of challenges, they tend to consist of things which present equal hazard to all aircraft: thunderstorms, high density altitude, etc. But whereas large multi-engine turbojets are well-equipped for cold weather flying, single-engine recips typically operate with minimal anti- and de-icing equipment, if any.

Anyway, it occurs to me that this kind of flying is exactly what we do in the Part 135 world. We operate on someone else’s timetable, and rarely is that schedule created with weather, circadian rhythm, airport staffing hours, or other such operational concerns in mind. As you might expect, the 135 safety record — while far better than Part 91 — does not reach the rarefied heights of the scheduled airlines. Some people feel it should. There are plenty of folks who feel Part 91 should reach that strata as well.

I tend to disagree.

Part 135 has the flexibility to operate at random times and into a far wider variety of places than scheduled airlines. While we do everything possible to make the flights as safe as humanly possible, flexibility cannot help but exact a price. Flying worldwide charter, I don’t know if my next trip will take me to Liberia or Las Vegas. I have to be prepared to go anywhere.

If that sounds incredible, then light general aviation flying should really blow your mind! The non-commercial Part 91 aviating so many of us do for personal reasons takes that freedom and ramps it up a hundred fold. Not only can you go anywhere you want at any time it suits you, you can do it at night, in IMC, in formation, and fly some aerobatics or sight-see along the way. You can fly a weird experimental airplane that you built in your garage. You can tow banners. Drop things from your airplane, then cut them up as they fall to earth? Yes, that’s fine. Fly high… or low. You can change your destination in mid-flight without asking anyone’s permission.

Heck, you can even take off with no destination whatsoever; those are some of my most cherished flights. When I call the VFR clearance delivery frequency at John Wayne Airport and they ask where I’m headed, nothing says freedom quite like using William Shatner’s response from the first Star Trek film: “Out there. That-a-way!”

Wrapping your mind around having the liberty to do those things while not being able to install a radio in your panel without approval from a certification office somewhere in Oklahoma City could cause a migraine… but let’s leave that for another day.

The point is, with added freedom comes added risk. And responsibility. It’s ironic that we think of airline pilots as having the greatest weight on their shoulders when rules, procedures, and operational specifications dictate almost everything they do. I’m not saying their job is easy. It ain’t. But if you’re not in awe of the authority and self-determination placed on your own shoulders every time you launch, think about this: we could have the safety record of the major airlines. All we’d need are the same rules and requirements for flight that they use. Seems to me that would be an awful lot like asking Santa for a big, dirty lump of coal in your stocking.

If there’s a way to have the freedom to land on five hundred foot long strips on the side of a mountain, tackle water runways, engage in flight training, and — most of all — fly to that family Christmas in an airplane with just one reciprocating engine without significantly higher risk than you’ll find on a typical airliner, I’d be quite surprised. But one thing every pilot has in common is that risk management is a major part of the job.

So as you contemplate that cross-country flight to celebrate the holidays with your loved ones, remember that the best pilot isn’t the one who finds the cheapest fuel, stuffs the most presents into the baggage compartment, or makes the softest landing. It’s the one who best manages the risk inherent in that flight.

Right, Gordo?

Rulemaking Adjusts Training Device Credit for Pilot Certification

Tuesday, December 9th, 2014

On Wednesday, December 3, 2014, the FAA issued a direct to final rule that will increase the allowed use of aviation training devices (ATDs) for instrument training. The rule will double the allowances under 14 CFR section 61.65(i) to 20 hours for credit in an ATD and allows flight schools operating under part 141 Appendix C to have a 40 percent training credit in an ATD for the instrument (IFR) rating. Previous allowances for ATD use were capped at 10 hours under part 61 and 10 percent under 141. The rule also removes the requirement to use a view-limiting device in the ATD. The comment period for the direct final rule will close Friday, January 2, 2015. The rule will become effective Tuesday, January 20, 2015, if no adverse comments are received.

In concert with this rule change is an update to Advisory Circular 61–136A, FAA Approval of Aviation Training Devices and Their Use for Training and Experience, which has been revised to improve guidance for the application and approval of these training devices. The AC also provides additional guidance on ATD use for training and how to properly log the time.

Finally, it looks like the FAA is coming around to agreeing with what we CFIIs have known for years. The airborne cockpit environment is a horrible classroom in which to teach. It’s noisy, full of distractions, occasionally unpredictable and, if the airplane is not tied down with the engine shut off, it is constantly moving through space-time. Frankly, any sane human being is scared of it, at first, though few would admit to it.

Ground school evolved from these realizations. Most flight instructors will acknowledge the learning benefits of imparting knowledge in quiet, well-lit, calming environments.  On the ground, in an ATD, CFIs can control how any flight lesson is going to play out.

Why? Because they hold most of the cards; no sudden ATC amendments to lesson plans, no unexpected flashing alternator-out lights, no tilted, giving up the ghost gyros mid-lesson and no unanticipated airspace restrictions or weather anomalies. That is, unless the CFII programs any of those anomalies into the ATD. Total control. Every teacher I know, no matter what discipline or age group, will tell you that really does feel good.

Students may not know it (they are often aching so badly for flight time that the thought of being in an ATD turns their stomachs) but flight simulation by computer is truly an extension of all the good things that ground school imparts to students. Doubling up on the ATD time, especially for IFR students, can easily shorten training time, sometimes cutting it in half, because it is easy for the instructor to program the ATD to quickly set up for repetition. Want to fly seven ILS approaches in an hour? No problem? Need to practice four different holding pattern entries? We can slew you instantly to any location, altitude, attitude—and you can take it from there. Over, and over, until you fly it right.

Cutting training time, however, is just one benefit of the ATD. The other is its cost. Most FBO-owned ATDs cost less to operate than an aircraft. That cost savings is passed to the student, who can save from one third to one half what it would cost to perform the same lesson in an aircraft.

Yes, this time the FAA knows what it is doing and has the stats to back up the decision. So make sure you get on the Federal Register site and let the FAA know we like the new ATD regulation. Do it before January 2!

Here is the link: https://www.federalregister.gov/articles/2014/12/03/2014-28485/aviation-training-device-credit-for-pilot-certification

A Self-Evident Solution

Monday, November 24th, 2014

Times are tough for general aviation, and we need a solid partner and advocate in Washington now more than ever. Unfortunately, the FAA is proving to be the exact opposite—a lead weight—and it’s becoming a big problem.

Complaining about the FAA has been a popular spectator sport for decades. I feel for those who work at the agency because most of the individuals I’ve interacted with there have been pleasant and professional. They often seem as hamstrung and frustrated with the status quo as those of us on the outside. In fact, I took my commercial glider checkride with an FAA examiner from the Riverside FSDO in 2004 and consider it a model of how practical tests should be run. So I’m not suggesting we toss the baby out with the bathwater.

But somewhere, somehow, as an organization, the inexplicable policy decisions, poor execution, and awful delays in performing even the most basic functions lead one to the conclusion that the agency is beset by a bureaucratic sclerosis which is grinding the gears of progress to a rusty halt on many fronts.

Let’s look at a few examples.

Example 1: Opposite Direction Approaches Banned

If you’re not instrument-rated, the concept of flying an approach in the “wrong direction” probably seems… well, wrong. But it’s not. For decades, pilots have flown practice approaches in VFR conditions for training purposes without regard for the wind direction. There are many logical reason for doing so: variety, the availability of a specific approach type, to practice circling to a different runway for landing, and so on. John Ewing, a professional instructor based on California’s central coast, described this as “going up the down staircase”.

For reasons no one has been able to explain (and I’ve inquired with two separate FSDOs in my area), this practice is no longer allowed at towered fields. Here’s what John wrote about the change:

…the FAA has decided that opposite direction approaches into towered airports are no longer allowed. To the uninitiated, practice approaches to a runway when there’s opposite direction traffic may seem inherently dangerous, but it is something that’s been done safely at many airports for as long as anyone can remember. One example in Northern California is Sacramento Executive where all the instrument approaches are to Runway 2 and 90% of the time Runway 20 is in use.

At KSAC, the procedure for handling opposite direction approaches is simple and has worked well (and without incident, to my knowledge): The tower instructs the aircraft inbound on the approach to start their missed approach (usually a climbing left turn) prior to the runway threshold and any traffic departing the opposite direct turns in the other direction.

For areas like the California Central Coast, the restriction on opposite direction instrument approaches has been in place since I arrived in June and it has serious implications for instrument flight training since the ILS approaches for San Luis Obispo, Santa Maria, and Santa Barbara are likely to be opposite direction 90% of the time. For a student to train to fly an ILS in a real aircraft, you need to fly quite a distance. Same goes for instrument rating practical tests that require an ILS because the aircraft is not equipped with WAAS GPS and/or there’s no RNAV approach available with LPV minima to a DA of 250 feet or lower.

The loss of opposite-direction approaches hurts efficiency and is going to increase the time and money required for initial and recurrent instrument training. As good as simulators are, there’s no substitute for the real world, especially when it comes to things like circling to land. Between the low altitude, slow airspeed, and division of attention between instruments and exterior references required for properly executing the maneuver, circling in low weather can be one of the most challenging and potentially hazardous aspects of instrument flying. If anything, we need more opportunities to practice this. Banning opposite-direction approaches only ensures we’ll do it less.

Example 2: The Third Class Medical

Eliminating the third class medical just makes sense. I’ve covered this before, but it certainly bears repeating: Glider and LSA pilots have been operating without formal medical certification for decades and there is no evidence I’m aware of to suggest they are any more prone to medical incapacitation than those of us who fly around with that coveted slip of paper in our pocket.

AOPA and EAA petitioned the government on this issue two years and nine months ago. The delay has been so egregious that the FAA Administrator had to issue a formal apology. Obviously pilots are clamoring for this, but we’re not the only ones:

Congress is getting impatient as well. In late August, 32 members of the House General Aviation Caucus sent a letter to Department of Transportation Secretary Anthony Foxx urging him to expedite the review process and permit the FAA to proceed with its next step of issuing the proposal for public comment. Early in September 11 Senators, who were all co-sponsors of a bill to reform the medical process, also asked the Department of Transportation to speed up the process.

So where does the proposed rule change now? It is someplace in the maze of government. Officially it is at the Department of Transportation. Questions to DOT officials are met with no response, telling us to contact the FAA. FAA officials comment that “it is now under executive review at the DOT.”

The rule change must also be examined by the Office of Management and Budget.

When the DOT and OMB both approve the proposal—if they do—it will be returned to the FAA, which will then put it out for public comment. The length of time for comments will probably be several months.

After these comments are considered, the FAA may or may not issue a rule change.

It occurs to me that by the time this process is done, it may have taken nearly as long as our involvement in either world war. Even then, there’s no guarantee we’ll have an acceptable outcome.

Example 3: Hangar Policy

The commonsense approach would dictate that as long as you’ve got an airplane in your hangar, you should be able to keep toolboxes, workbenches, American flags, a refrigerator, a golf cart or bicycle, or anything else you like in there. But the FAA once again takes something so simple a cave man could do it and mucks it up. The fact that the FAA actually considers any stage of building an airplane to be a non-aeronautical activity defies both logic and the English language. Building is the very essence of the definition. People who’ve never even been inside an airplane could tell you that. In my mind, this hangar policy is the ultimate example of how out of touch with reality the agency has become.

Example 4: Field Approvals

These have effectively been gone from aviation for the better part of a decade. It used to be that if you wanted to add a new WhizBang 3000 radio to your airplane, a mechanic could get it approved via a relatively simple, low-cost method called a field approval. For reasons nobody has even been able to explain (probably because there is no valid explanation), it became FAA policy to stop issuing these. If you want that new radio in your airplane, you’ll have to wait until there’s an STC for it which covers your aircraft. Of course, that takes a lot longer and costs a boatload of money, if it happens at all. But the FAA doesn’t care.

Homebuilts put whatever they want into their panels and you don’t see them falling out of the sky. Coincidence? I don’t think so.

Example 5: RVSM Approvals

Just to show you that it’s not only the light GA segment that’s suffering, here’s a corporate aviation example. The ability to fly in RVSM airspace—the area between FL290 and FL410—is very important. Being kept below FL290 is not only inefficient and bad for the environment, it also forces turbine aircraft into weather they would otherwise be able to avoid. The alternative is to fly at FL430 and above, which can mean leaving fuel and/or payload behind, or flying in a paperwork-induced coffin corner.

Unfortunately, RVSM approval requires a Letter of Authorization from the FAA. If the airplane is sold, the LOA is invalidated and the new owner has to go through the paperwork process with the FAA from step one. Even if the aircraft stays at the same airport, maintained by the same people, and flown by the same crew. If you so much as change the name of your company, the LOA is invalidated. If you sneeze or get a hangnail, they’re invalidated.

From AIN Online:

Early this year the FAA agreed to a streamlined process to handle RVSM LOA approvals, but for the operator of a Falcon 50 that is not the case. He told AIN that he has been waiting since April for an RVSM LOA.

Because the LOA hasn’t been approved, this operator can fly the Falcon 50 at FL290 or lower or at FL430 or above. On a hot day, a Falcon 50 struggles at FL430. “The other day ISA was +10,” he told AIN, “and we are just hanging there at 43,000 at about Mach 0.72. If we had turbulence we could have had an upset. We’re right there in the coffin corner. Somebody is going to get hurt.”

On another recent flight in the Falcon, “There was a line of storms in front of us. We’re at FL290. They couldn’t let us climb, and I was about to declare an emergency. I’m not going to run my airplane through a hailstorm. It’s turbulent and the passengers are wondering what’s going on.”

When forced to fly below FL290, the Falcon burns 60 percent more fuel, he said. The company’s three Hawkers have a maximum altitude of FL410, and LOA delays with those forced some flights to down to lower altitudes. “We had one trip in a Hawker before it received its RVSM LOA,” he added, “and they got the crap kicked out of them. Bobbing and weaving [to avoid thunderstorms] over Iowa, Minnesota and Nebraska in the springtime, you’re going to get your [butt] kicked.” The Hawker burns about 1,600 pph at FL370, but below FL290 the flow climbs to more than 2,000 pph.

It’s bad for safety and the FAA knows it. If they were able to process paperwork quickly, it might not be such an issue, but many operators find that it takes many months—sometimes even a year or more—to get a scrap of paper which should take a few minutes at most.

Show Me the Money

So what’s behind the all this? Americans love to throw money at a problem, so is this a budget cut issue? Perhaps the FAA is a terribly cash-starved agency that simply isn’t given the resources to do the jobs we’re asking of it.

According to the Department of Transportation’s Inspector General, that’s not the case. He testified before the House Committee on Transportation and Infrastructure earlier this week that the FAA’s budget has been growing even as traffic declines:

The growth of the agency’s budget has been unchecked, despite the managerial failings and the changes in the marketplace. Between 1996 and 2012, the FAA’s total budget grew 95 percent, from $8.1 billion to $15.9 billion. During that same period, the agency’s air traffic operations dropped by a fifth. As a result, taxpayers are now paying the FAA nearly twice as much to do only 80 percent of the work they were doing in the 1990s.

Over that same 16-year span, the FAA’s personnel costs, including salary and benefits, skyrocketed from $3.7 billion to $7.3 billion—a 98 percent increase—even though the agency’s total number of full-time workers actually fell 4 percent during that time.

Self-Evident Solutions

Okay, we’ve all heard the litany of issues. From the inability to schedule a simple checkride to big problems with NextGen development or the ADS-B mandate, you’ve probably got your own list. The question is, how do we fix the problem?

I think the answer is already out there: less FAA oversight and more self-regulation. Look closely at GA and you’ll see that the segments which are furthest from FAA interference are the most successful. The Experimental Amateur-Built (E-AB) sector and the industry consensus standards of the Light Sport segment are two such examples. The certified world? Well many of them are still building the same airframes and engines they did 70 years ago, albeit at several times the cost.

Just as non-commercial aviation should be free of the requirement for onerous medical certification, so too should it be free of the crushing regulatory weight of the FAA. The agency would make a far better and more effective partner by limiting its focus to commercial aviation safety, promoting general aviation, and the protection and improvement of our infrastructure.

Dreams Deferred?

Wednesday, November 12th, 2014

If your heart is tied to aviation then you probably felt a little bit crushed, deflated, last month, when the aerospace world took one step forward, then two big steps back, all in one week.

Google executive Alan Eustace rose to, then fell from 135,000 feet on October 25, breaking a fairly recent record of just under 128,000 feet set by Felix Baumgartner in a much publicized Red Bull-sponsored stunt just a couple years ago. Eustace, unlike Baumgartner, performed his feat in relative obscurity. He told the press afterward that he wanted to make sure the gamble worked before publicizing it. What was unusual about the skydive was that Eustace used only a pressure suit and an 11 million cubic foot balloon to ascend—no fancy pressure capsule needed.

Eustace had clearly studied the Baumgartner jump, because he chose a different freefall position, and wore in his pressure suit a forced-heated-air system to keep his faceplate from fogging. The result was a much more stable five minute freefall to earth—one he could actually watch from inside his pressure suit. The gambit was a risk, and it worked out. One step forward.

On the other hand, just five days later Orbital Sciences had to destroy an Antares rocket and payload seconds after liftoff when one of the rocket’s venerable engines failed. The company had been purchasing the engines from Russian sources. Company CEO David Thompson told press that the company will find different engines for its rockets from now on.

Hot on the heels of this news came the inflight breakup of SpaceShipTwo, killing the co-pilot, Michael Tyner Alsbury, and injuring its pilot, Peter Siebold. The aircraft was in its final flight testing regime, and was expected to begin taking passengers into near-earth orbit sometime in 2015.

There is no question of that happening now. Richard Branson, CEO of Virgin Galactic, is clearly heartbroken and deeply concerned as the crash investigation progresses. The NTSB hints at possible causes, but I won’t be an armchair investigator and go into any details about an ongoing NTSB investigation here. The lay press are bad enough at that.

One step forward, two big steps back. The result is that the budding commercial space industry had a very bad month in October; and we are left with questions about the wisdom of how NASA contract monies are being spent; and even whether the dream of space tourism is a reasonable possibility, given today’s technology.

Personally? I want to see Branson shake it off and get back to the task of innovating, for the sake of humanity. Sure, those first flights are going to be little more than joyrides, but think of the possibilities that kind of technology may have for our future. Aerospace is about speed and altitude and moving people and materials as quickly and efficiently as possible. It always has been about that, at the core. Branson’s dream could jump us forward—something that hasn’t happened since the days of Concorde.

Or it could be a false path, as Concorde turned out to be. The thing is, we won’t know until we try. I hope he keeps trying until the universe finally grants him success.

Flying Cars

Thursday, November 6th, 2014

I’m a professional futurist and perhaps the most common question that I’ve received on radio interviews and after speeches is, “So where’s the flying cars? You futurists have been predicting that forever.”

First of all, that’s not true. There have been some science fiction folks, of course, that always had some variation of a car that flies, but I don’t know of any real futurist that “predicted” that we’d have flying cars at any particular time.

That said . . . they’re coming!

You can’t look across the breakthroughs that are happening in a variety of technological areas and at the same time notice the new crop of flying/driving machines that are soon to be sold and on the drawing boards, and not believe that something’s going on.  Change is in the wind and, like drones, there will be far more flying cars in the not very distant future.

I’ve covered a rather sexy planned flying car here in the past but thought you might like to see a couple that could be closer in.

TERRAFUGIA

Terrafugia, of course, is the biggest kid on the block, sporting a bunch of MIT graduates who have had a flying model of their initial Transition car/plane for about two years.  You can make a down payment, with delivery anticipated to be sometime soon.

Their ultimate objective is the TF-X, shown below. They had a mockup of this car/plane at Oshkosh this summer.  It’s a vertical takeoff and landing machine that is really quite extraordinary.

Here’s where you can see an animation of this rather cool vehicle.

Terrafugia TFx. Image courtesy of Terrafugia.

Terrafugia TFx. Image courtesy of Terrafugia.

AEROMOBIL

From Slovakia comes the AeroMobil 3.0, one of the most futuristic looking entries in the flying car field.  It flies at 125 mph or more for 430 miles and can max out at over 100 mph on the ground and cover distances exceeding 500 miles.  The AeroMobil 3.0 is undergoing flight testing now (you can see a great video here).

AeroMobil 3.0. Photo courtesy of AeroMobil.

AeroMobil 3.0. Photo courtesy of AeroMobil.

AeroMobil 3.0. Photo courtesy of AeroMobil.

AeroMobil 3.0. Photo courtesy of AeroMobil.

A pretty cockpit for two. Photo courtesy of AeroMobil.

A pretty cockpit for two. Photo courtesy of AeroMobil.

Upset Recovery Training vs. Aerobatics

Tuesday, October 28th, 2014

Upset recovery training has been all the rage over the past couple of years. A Google search of that exact phrase returns more than 24,000 results. There’s a professional association dedicated to such training. ICAO even declared aircraft upsets to be the cause of “more fatalities in scheduled commercial operations than any other category of accidents over the last ten years.”

Nevertheless, I get the impression that some folks wonder if it isn’t more of a safety fad than an intrinsic imperative. It’s hard to blame them. You can hardly open a magazine or aviation newsletter these days without seeing slick advertisements for this stuff. When I was at recurrent training a couple of months ago, CAE was offering upset recovery training to corporate jet pilots there in Dallas. “If I wanted to fly aerobatics, I’d fly aerobatics!” one aviator groused.

He didn’t ask my opinion, but if he had, I’d remind him that 99% of pilots spend 99% of their time in straight and level flight — especially when the aircraft in question is a business jet. I’m not exaggerating much when I say that even your typical Skyhawk pilot is a virtual aerobat compared to the kind of flying we do on charter and corporate trips. For one thing, passengers pay the bills and they want the smoothest, most uneventful flight possible.

In addition, these jets fly at very high altitudes – typically in the mid-40s and even as high as 51,000 feet. Bank and pitch attitudes tend to stay within a narrow band. Yaw? There shouldn’t be any. The ball stays centered, period. We aim for a level of smoothness that exceeds even that of the airlines. Passengers and catering may move about the cabin frequently during a flight, but it shouldn’t be because of anything we’re doing up front.

Fly like that for a decade or two, logging thousands and thousands of uneventful, straight-and-level hours and the thought of all-attitude flying can become – to put it mildly – uncomfortable. I’ve even seen former fighter pilots become squeamish at the thought of high bank or pitch angles after twenty years of bizjet flying.

Unfortunately, there are a wide variety of things that can land a pilot in a thoroughly dangerous attitude: wind shear, wake turbulence, autopilot failure, mechanical malfunction (hydraulic hard-overs, asymmetric spoiler or flap deployment, etc.), inattention, and last but not least, plain old pilot error. Look at recent high-profile accidents and you’ll see some surprisingly basic flying blunders from the crew. Air France 447, Colgan 3407, and Asiana 214 are just three such examples. It may not happen often, but when it does it can bite hard.

So yes, I think there is a strong need for more manual flying exposure in general, and upset recovery training in particular. This isn’t specific to jet aircraft, because some light aircraft have surpassed their turbine-powered cousins in the avionics department. I only wish the 1980’s era FMS computer in my Gulfstream was as speedy as a modern G1000 installation.

Defining the Problem

To the best of my knowledge, neither the NTSB or FAA provide a standard definition for “upset”, but much like Supreme Court Justice Potter Stewart, we pretty much know it when we see it. The term has generally come to be defined as a flight path or aircraft attitude deviating significantly from that which was intended by the pilot. Upsets have led to loss of control, aircraft damage or destruction, and more than a few fatalities.

As automation proliferates, pilots receive less hands-on experience and a gradual but significant reduction in stick-and-rudder skill begins to occur. The change is a subtle one, and that’s part of what makes it so hazardous. A recent report by the FAA PARC rulemaking workgroup cites poor stick and rudder skills as the number two risk factor facing pilots today. The simple fact is that windshear, wake turbulence, and automation failures happen.

The purpose of upset recovery training is to give pilots the tools and experience necessary to recognize and prevent impending loss of control situations. As the saying goes, an ounce of prevention is worth a pound of cure, and that’s why teaching recovery strategies from the most common upset scenarios is actually a secondary (though important) goal.

What about simulators? They’ve proven to be an excellent tool in pilot training, but even the most high fidelity Level D sims fall short when it comes to deep stalls and loss of control scenarios. For one thing, stall recovery is typically initiated at the first indication of stall, so the techniques taught in the simulator may not apply to a full aerodynamic stall. Due to the incredibly complex and unpredictable nature of post-stall aerodynamics, simulators aren’t usually programmed to accurately emulate an aircraft in a deeply stalled condition. Thus the need for in-aircraft experience to supplement simulator training.

Upset Recovery vs. Aerobatics

It’s important to note that upset recovery training may involve aerobatic maneuvering, but it does not exist to teach aerobatics. Periodically over the years, discussions on the merits of this training will cause a co-worker to broach the subject of flying an aerobatic maneuver in an airplane which is not designed and built for that purpose. This happened just the other day. Typically they’ll ask me if, as an aerobatic pilot, I would ever consider performing a barrel or aileron roll in the aircraft.

I used to just give them the short answer: “no”. But over time I’ve started explaining why I think it’s such a bad idea, even for those of us who are trained to fly such maneuvers. I won’t touch on the regulations, because I think we are all familiar with those. I’m just talking about practical considerations.

Normal planes tend to have non-symmetrical airfoils which were not designed to fly aerobatics. They feature slower roll rates, lower structural integrity under high G loads, and considerably less control authority. You might have noticed that the control surfaces on aerobatic airplanes are pretty large — they are designed that way because they’re needed to get safely into and out of aerobatic maneuvers.

That’s not to say an airplane with small control surfaces like a business jet or light GA single cannot perform aerobatics without disaster striking. Clay Lacy flies an airshow sequence in his Learjet. Duane Cole flew a Bonanza. Bob Hoover used a Shrike Commander. Sean Tucker flew an acro sequence in a Columbia (now known as the Cessna TTx). However, the margins are lower, the aerobatics are far more difficult, and pilots not experienced and prepared enough for those things are much more likely to end up hurt or dead.

Sean Tucker will tell you that the Columbia may not recover from spins of more than one or two turns. Duane Cole said the Bonanza (in which he did inverted ribbon cuts) had barely enough elevator authority for the maneuver, and it required incredible strength to hold the nose up far enough for inverted level flight. Bob Hoover tailored his performance to maneuvers the Shrike could do — he’ll tell you he avoided some aerobatic maneuvers because of the airplane’s limitations.

Knowing those limitations and how to deal with them — that’s where being an experienced professional aerobatic pilot makes the difference. And I’m sure none of those guys took flying those GA airplanes upside down lightly. A lot of planning, consideration, training and practice went into their performances.

Now, consider the aircraft condition. Any negative Gs and stuff will be flying around the cabin. Dirt from the carpet. Manuals. Items from the cargo area. Floor mats. Passengers. EFBs. Drinks. Anything in the armrest or sidewall pockets. That could be a little distracting. Items could get lodged behind the rudder pedals, hit you in the head, or worse.

If the belts aren’t tight enough, your posterior will quickly separate from the seat it’s normally attached to. And I assure you, your belts are not tight enough. Getting them that way involves cinching the lap belt down until it literally hurts. How many people fly a standard or transport category aircraft that way?

Now consider that the engine is not set up for fuel and oil flow under negative Gs. Even in airplanes specifically designed for acro, the G loads move the entire engine on the engine mount. In the Decathlon you can always see the spinner move up an inch or two when pushing a few negative Gs. Who knows what that would do with the tighter clearances between the fan and engine cowl on an airplane like the Gulfstream?

Next, let’s consider trim. The jet flies around with an electric trim system which doesn’t move all that quickly. The aircraft are typically trimmed for upright flight. That trim setting works heavily against you when inverted, and might easily reach the point where even full control deflection wouldn’t be sufficient.

I could go on, but suffice it to say that the more I learn about aerobatics, the less I would want to do them in a non-aerobatic aircraft – and certainly not a swept wing jet! Sure, if performed perfectly, you might be just fine. But any unusual attitude is going to be far more difficult — if not outright impossible — to recover from.

Dang it, Tex!

Every time someone references Tex Johnson’s famous barrel roll in the Boeing 707 prototype, I can’t help but wish he hadn’t done that. Yes, it helped sell an airplane the company had staked it’s entire future on, but aerobatic instructors have been paying the price ever since.

Aerobatic and upset recovery training: good. Experimenting with normal category airplanes: bad. Very bad.

Nearly Empty Skies

Tuesday, October 14th, 2014

This morning I heard an airplane take off. It was a throaty roar of a single engine piston airplane, and though I didn’t see it, I’d swear it was a Cessna 182. It was a wonderful noise. It was a noise I associate with home.

You see, I’ve been traveling on the Iberian Peninsula for a month, and in that time I saw or heard general aviation aircraft less than a half a dozen times. It was the oddest sensation, asking locals if there was an airport in the area for small aircraft, and seeing faces draw a complete blank. The question wasn’t being lost in translation. The small airports are so quiet these days that the people had no real experience with light aircraft.

I’d researched general aviation in Portugal and Spain before I left the U.S., and had high hopes of encountering at least some aeroclub flying, similar to what I had found traveling in South Africa, but it was not to be. Even the flight training going on in the countries seemed anemic in comparison to the activity here in the U.S. Sad, too, because in both countries the GA airports were there. They were just seriously under utilized.

In Spain the complaint is that handling fees, a combination of security restrictions and onerous, unnecessary services (bus rides on the ramp to and from the general aviation terminal) are strangling general aviation pilots. Even though mandated tariffs are relatively inexpensive, the companies providing the services are padding these fees so much that, according to AOPA Spain, they approach the cost of operating the airplane for the cross country flight.

The most aviation I saw over the course of a month traveling the peninsula north to south, was in the little town of Evora, where Skydive Portugal had a Cessna 206 running all day one Saturday, taking neophytes up for tandem jumps. It was great to watch the airplane head off, climbing to 13,00o MSL, and then disgorging its load. There is nothing quite like the snap and swoosh of a chute opening above you, followed by the hoots and laughter of the tandem riders, who seemed unanimoScreen shot 2014-10-10 at 4.48.04 PMusly thrilled both by the freefall and by the fact that the chute opened on command. They’d live to jump another day!

But other than the Cessna 206 hauling skydivers there was just one or two general aviation movements on the field over the four days I was there. This, even though Embraer has a large, modern metal and composite factory just off the north end of the runway, where it is making parts for its Legacy 450/500 aircraft, along with parts for military aircraft.

I have to admit that it made me sad to see so few aircraft flying in two countries where the weather and the terrain is perfect for general aviation. It seems that onerous fees, combined with struggling economic trials have put serious challenges to pilots in Portugal and Spain.

My hope is that they can overcome the trials and re-emerge as great countries for general aviation flying in Europe. That way, the next time I visit, I can see the Iberian Peninsula the way I most enjoy, from the air.

 

Liability: The Price We Pay

Wednesday, October 1st, 2014

As large as the aviation industry looks to those on the outside, once you’re on the other side of the fence, it doesn’t take long to realize that it’s a very small world. One of the big challenges facing that world has been from product liability issues.

The $100 screw. The $9.00 gallon of fuel. The $5,000 part that costs $50 at a local hardware store. We’ve all seen it. I recall the day a friend told me the seat back for my Pitts S-2B, which is literally a small flat piece of ordinary plywood, cost something like $600. I’m not averse to parts manufacturers turning a profit, but that left my mouth hanging open. My friend? He just shrugged and walked away, as though this was ordinary and normal. The saddest part is that I realized he was right. It is.

Liability concerns are a major expense and motivator for many industries. That’s why Superman costumes come with warnings that “the cape does not enable the wearer to fly”, Zippo cautions the user not to ignite the lighter in your face, and irons are sold with tags advising against ironing clothes while they’re being worn. But for general aviation, this sort of thing is dragging the lot of us down as surely as a cement block tossed into the murky waters of the East River.

The classic example of this phenomenon can be seen in the high cost for new products like airplanes. Look at the sharp rise in the price of a new Skyhawk over the past thirty years. The first one was built in 1955, so the research and development costs for this model must have been recouped decades ago. A new Bonanza is a cool million. Low production volumes and high liability costs — a chicken and egg pair if there ever was one — are prime culprits for that inflation.

In fact, for about a decade, the general aviation industry essentially stopped producing new piston airplanes. From the mid-80s to the mid-90s, product liability was such that nearly every major OEM exited the business. The insurance costs rose, the manufacturers had no choice but to pass that on to the consumer, who was summarily priced out of the market. Sales fell, per-unit liability costs rose further, and the cycle spiraled downward until even those companies which still had an operating production line were only turning out a handful of airplanes per year.

The General Aviation Revitalization Act of 1994 helped somewhat. Aircraft manufacturers started producing planes again. The Cirrus, DiamondStar, Columbia, and other such advanced aircraft were brought to market. New avionics systems were developed. But the liability problem never went away. Frivolous lawsuits still abound, grinding away at our diminished world like a wood chipper consuming a sturdy log. Manufacturers have been sued for things as idiotic as not telling a pilot that the engine wouldn’t operate without fuel. I don’t have to tell you how this lunacy looks to people from other countries, do I?

I often wonder, what would an aircraft like the RV-6 cost if it was certified? You can buy one for as little as $45,000 today. Speaking of Amateur-Built aircraft, liability is one of the primary reasons advancements such as electronic ignition proliferate in the E-AB world when they’re almost unheard of in aircraft with a standard airworthiness certificate.

Mike Busch has penned many articles about the ways liability concerns drive decisions in the maintenance business. The result? Lower efficiency, higher cost, and at times even a decrease in the level of safety that is supposedly paramount. But it goes beyond that. Many products which would otherwise be brought to market are not because liability issues tilt the scale away from taking that risk in the first place.

Even proven, well-established products are sometimes lost to this phenomenon. Seven years ago, the largest manufacturer of aircraft carburetors, Precision Airmotive, abruptly decided to stop making, selling, and supporting them. In a letter to customers on their web site, they wrote:

Precision Airmotive LLC has discontinued sales of all float carburetors and component parts as of November 1, 2007. This unfortunate situation is a result of our inability to obtain product liability insurance for the product line. Precision Airmotive LLC and its 43 employees currently manufacture and support the float carburetors used in nearly all carbureted general aviation aircraft flying today. Precision has been the manufacturers of these carburetors since 1990. These FAA-approved carburetors were designed as early as the 1930s and continue to fly over a million flight hours a year. After decades of service, the reliability of these carburetors speaks for itself.

Nonetheless, Precision has seen its liability insurance premiums rise dramatically, to the point that the premium now exceeds the total sales dollars for this entire product line. In the past, we have absorbed that cost, with the hope that the aviation industry as a whole would be able to help address this issue faced by Precision Airmotive, as well as many other small aviation companies. Our efforts have been unsuccessful.

This year, despite the decades of reliable service and despite the design approval by the Federal Aviation Administration, Precision Airmotive has been unable to obtain product liability insurance for the carburetor product line. While we firmly believe that the product is safe, as does the FAA, and well-supported by dedicated people both at Precision and at our independent product support centers, unfortunately the litigation costs for defending the carburetor in court are unsustainable for a small business such as Precision.

Even if you don’t own an airplane, you’ve probably noticed that aircraft rental is prohibitively difficult and expensive. Companies like OpenAirplane are trying to make a dent in this formidable problem, but many aircraft types simply cannot be rented at all for solo flight anymore. Seaplanes, aerobatic aircraft, twins, turbines, and many other types might as well not exist unless you have the cash to buy them outright. And those that are still rented require extensive checkouts, form filling, and a large expenditure of time, money and energy. Why? To check every possible box off when it comes to liability. The manager of one FBO here in Southern California told me in no uncertain terms that it wouldn’t matter if Bob Hoover himself walked through the door, he wouldn’t get one iota of consideration in that regard. Does that sound right to you?

There’s an obvious answer here. If you’re thinking tort reform, you’re only half-right. Suing manufacturers for accidents that are clearly not their fault simply because the plaintiff knows they’ll settle is only ensuring the next generation won’t be able to fly. The real solution is to — in the words of a pilot I know — put on our big-boy britches and come to terms with the fact that life in general, and aviation in particular, involves risk. From the Doolittle Raiders to the folks at Cirrus Aircraft, history shows over and over again that risk is a part of every successful venture. We’d all love to live in a world where there is no risk, where following the dictates of Title 14 would ensure nothing ever goes wrong and nobody ever gets hurt. It’s a fallacy.

Crushing liability costs aren’t limited to carbs. And many parts of our airplanes are manufactured by a very small number of companies. Prop governors come to mind. Vacuum pumps. Brakes. Fasteners. If one firm is having trouble staying in business, odds are the others might be as well. It doesn’t portend a rosy future for the industry, especially when you consider that many of the advances we now enjoy came from small companies just like Precision Airmotive.

Sure, with Experimentals you have more freedom to put what you want on your aircraft. But many of the components on experimental aircraft are certified anyway. Most of them essentially have certified engines, props, skins, wiring, brakes, tires, fasteners, etc. This liability issue affects everyone regardless of what it says on the plane’s airworthiness certificate. This sort of thing isn’t limited to aviation. But GA is particularly vulnerable to abuse because of the implication that anyone involved in it must have deep pockets. The end result is a case like this one, where a jury awarded $480 million verdict against an aircraft manufacturer even though the NTSB indicated pilot error was the cause.

Liability concerns hurt everyone in aviation, not just those with reciprocating single-engines. I’ll give you one example from the corporate and charter business that I work in: time and time again, thousands of dollars of catering from one of our charter flights will go untouched by the passengers. We’ll land at our destination with a eighty pounds of beautifully packaged and prepared food. Five-star presentation of the highest-quality and healthiest food you’ll see anywhere.

At the same time, just beyond the airport fence are people who go to bed hungry. Logic dictates that we might want to put two and two together. But because the operators and customers of these aircraft are high net worth individuals who would certainly find themselves on the receiving end of a lawsuit at the first indication of food poisoning or other malady, load after load of this food goes into the trash every single day all across the country. Over the past three years I’d imagine the total weight of the food from flights I’ve flown that went into the trash would total a couple of tons.

While lawsuits and courtrooms certainly have their place, I personally think it’s high time our society acknowledged the fact that safety does not equate an absence of risk. Failure to do so is putting us, our industry, our economy, and even our way of life at risk. That’s the cost of the society we’ve built. Is it worth it?