Archive for the ‘Trends and analysis’ Category

Solar Impulse Flies, and Electric Sees its Day in the Sun Coming

Monday, April 18th, 2016

Whenever you see the term proof-of-concept in front of an aircraft designation you need to think: extremely experimental, might never come to fruition, and of course, probably going to break. The two pilot-geniuses behind the Swiss Solar Impulse perpetual motion flying machine (I say that because frankly, it never has to stop flying), Bertrand Piccard and André Borschberg, have been holed up in Hawaii for months now with their proof-of-concept Solar Impulse airplane because they broke it on the five-day non-stop flight across the Pacific

Solar Impulse arrives in Hawaii after flying five days  nonstop from Nagoya, Japan.

Solar Impulse arrives in Hawaii after flying five days nonstop from Nagoya, Japan.

from Nagoya, Japan, to Hawaii. That put their proof-of-concept flight around the globe on perpetual hold. New batteries had to be manufactured for the aircraft and the battery cooling system, which was determined to be inadequate for such a long flight, had to be completely redesigned and manufactured, as well.

It turns out the mission needed $20 million to make that happen, which meant funds needed to be raised, as well. Fundraising, however, is something Piccard and Borschberg’s idealistic group is quite good at. They have worked slowly over a couple decades, to date, to bring the experimental Solar Impulse program to life. In the process they’ve constructed and flown several aircraft that, by virtue of their electric engines, batteries and solar cells, can stay aloft essentially indefinitely. April 15, 2016 they announced that the airplane is ready to relaunch its mission. Next stop? Somewhere east of the California coastline. What are they waiting for? The perfect VFR day, or close to it. Yeah, there are still limitations. But remember, it’s just a proof-of-concept machine.

Once upon a time people delving into electric-powered flight were considered the outliers of experimental aviation. That is no longer true. At Sun ‘n Fun 2016, which concluded earlier this month, the CEO of the Colorado-based Aero Electric Aircraft Corporation (AEAC) announced that its all-electric powered two-place trainer, the Sun Flyer, was expected to fly within weeks. The Sun Flyer is powered by a single tried and true Emrax 268 electric motor putting out 100 kilowatts, which is basically 135 hp.

AEAC's proof-of-concept Sun Flyer is nearly ready to fly.

AEAC’s proof-of-concept Sun Flyer is nearly ready to fly.

“Because the nose of this airplane is so sleek and narrow, however, the propeller is not blocked, giving you so much more power,” Bye explained to the Sun’n Fun crowd. “For instance, a typical Cessna 172 loses 30 percent of the power generated by the prop because it is blocked by the flat plate surface of the nose of the aircraft,” he said. “On the Sun Flyer 95 percent of the propeller energy can be used to convert torque to thrust. That’s how you get to an equivalent horsepower of more like 160 hp.”

The all carbon fiber construction of the Sun Flyer keeps it light, and South Korea’s LG’s chem batteries provide 260 watt-hours per kilogram of electricity for the engine, which adds up to three hours to empty. Except this airplane has regenerative energy capture technology in its propeller. What that means is that energy is recaptured when the airplane descends at more than 400 feet per minute. That energy recharges the batteries. This is how the Solar Impulse stays aloft each night, when its solar cells cannot capture light and turn it into energy. The pilot climbs in the late afternoon to 28,000 feet, and then descends all night long in parabolic arcs. It is proven technology, and AEAC’s Sun Flyer intends to use it to stay aloft for, well, who knows how long?

“It is certain that students who train in a Sun Flyer will have totally different fuel planning skills,” Bye chuckled. The Sun Flyer also sports solar cells on its upper wing surfaces, for recharging on the ground and in the air on sunny days. Bye stated that two days on a sunny ramp may be all a Sun Flyer needs to fuel up for its next sortie. In any case estimated operating costs, including maintenance and ground power refueling, is around $11 per hour. That compares to an average flight school Cessna 172’s estimated operating costs of $66 per hour in 2016 dollars.

AEAC intends to certify the Sun Flyer in 14 CFR Part 21. It will have a Standard Airworthiness certificate, a 1654 lbs max gross weight,  two seats, a single engine, and a 45-knot stall speed.  The payload will be 440 lbs, according to Bye. It’s sound footprint at 500 ft AGL? Nearly nil, at 55 decibels. If the upfront price tag is right (and there is all kinds of speculation there) it could revolutionize basic flight training, making it affordable for a larger swath of people, and more profitable for flight schools, all at once.

AEAC will have competition in the all-electric trainer market from Slovenian Pipenstrel, Chinese Yuneec and behemoth Airbus. Both companies are well into their two-seat electric airplane programs. Personally, I can’t wait to see what the flight training fleet looks like in 2025.

Seeking Economy, Playing it Safe: Why I fuel up more often than most GA pilots

Monday, February 22nd, 2016

After 31 years as a flight instructor and considerably longer as a certified pilot, I’ve seen my fair share of accidents and incidents caused by aircraft running perilously low on fuel. In the latest data (2012) listed on the NTSB.gov website out of 988 general aviation accidents (personal flight), some 50 were attributed to fuel (or lack thereof). It is impossible to tell how many out-of-fuel incidents actually happened that year, or any year, in general aviation, because most pilots who get away with landing the airplane on an airfield after losing power never mention it to the FAA. (Would you?) The good news is that the graph lists no fatalities attributed to such accidents in 2012; but going back a decade from there not all pilots were so lucky.

NTSB statistics on personal flying accidents in 2012

NTSB statistics on personal flying accidents in 2012

I have to say, I work hard so as not to be one of those pilots. In my career I’ve flown plenty of airplanes with fuel gauges placarded “INOP” or with gauges so clearly inaccurate that one just knew not to trust them. I was brought up in aviation to visually inspect, and even measure (with a calibrated dipstick) the fuel in my tanks, and to use a calibrated time/distance method of tracking my fuel burn in flight. So, yeah, I’ve got a lot of tools on my checklist to prevent me from running out of fuel on a flight. So do a lot of other pilots I know.

Then why do they still run out of fuel? There are a few out-of-fuel accidents caused by shrinkage of the fuel tank bladder from age (even though senders registered it full, and visual inspection showed it full, the bladder could not hold as much fuel as indicated). Those are, however, rare. And even in those cases I’d question the pilot, wondering why he didn’t notice that the tanks didn’t seem to hold as much as they used to hold. There are a few out-of-fuel incidents from leakages (a stuck gascolator quick drain, for instance). Again, I’d question the pilot on his/her preflight thoroughness (always step back and look at the airplane top to bottom one more time before you climb in to fly away).

Then there are the math errors and buttonology errors. Essentially the pilot miscalculates actual fuel burn, and, knowing his fuel gauges are generally inaccurate s/he ignores them until the engine starts to sputter. This problem can occur if the pilot forgot to consider his fuel burn on climb, in a full-rich mixture configuration. Or, he may have completely forgotten to lean the mixture.

Buttonology errors are more of a modern airplane’s problem. Perhaps the pilot did visually inspect his tanks and noted that each seemed to be down a few gallons. But it is tricky with some fuel totalizers to program in the exact amount of fuel in each tank. Maybe the pilot just taps the “full” button but promises she’ll remember the tanks aren’t full. And then the headwinds are stronger than predicted at altitude. Yet her fuel totalizer tells her not to worry—she’s got enough gas to get to her destination. Except she doesn’t.

Another pilot just pushed the throttle up, figuring he could go faster into the headwind and solve the problem that way. He did not, however, account for the extra fuel he was burning at the higher power setting.

Interestingly enough, most of the pilots who miscalculate fuel at the end of a long flight leg land just short (say, within 10 or so miles) of their intended destination. Sometimes on another airfield. Sometimes not.

I maintain that in most out-of-fuel accidents and incidents the real culprit is poor preflight planning. Pilots simply calculate the fuel exhaustion point of their aircraft, maybe slap a reserve on there (the FAA minimum on a VFR day is just 30 minutes) and then draw a line (most of the time with a flight planner app) that represents that time/distance on a chart and pick an airport near the end of it as their refueling point. Maybe they use an app to find the most competitive fuel in the area and fly to that airport. I get what they are doing. Pilots who fly light general aviation aircraft tend to want to fly long flight legs because they are perceived as most efficient. Many aircraft engines burn twice the fuel in climb as they do in cruise. They want to limit the amount of time they spend at those high power and fuel flow settings.

Well, efficiency be damned. When you are planning a flight, or for that matter, preflighting your fuel system, it makes no sense to set yourself up for failure by pushing the limits of your aircraft’s capabilities. Out-of-fuel accidents can be prevented so easily. Plan to land with twice the FAA minimum in fuel—the reserve recommended by the AOPA Air Safety Institute. Period.

Plan for unanticipated headwinds by underestimating your aircraft’s performance. I flight plan at a lower speed and higher fuel burn than what my airplane typically does. It is my cushion. I like cushions because they give me the wiggle room I need on days where the weather doesn’t play into my hand.

AOPA's newest version of its flight planner provides members with an excellent tool for preventing out-of-fuel accidents and incidents.

AOPA’s newest version of its flight planner provides members with an excellent tool for preventing out-of-fuel accidents and incidents.

And do what I do: use a sophisticated flight planning tool such as those found in moving map apps, or browser-based tools such as AOPA’s flight planner, which

offers easy-to-use graphic tools for choosing good refueling points along any flight path. When programmed with your aircraft’s performance parameters and departure time the planner will color-code your course to indicate where you’ll need to land for fuel, based on the forecast wind. The magenta route line will turn yellow to represent the caution zone segment in which you have 60 to 90 minutes of fuel remaining. The course segment will turn red if less than 60 minutes of fuel remains. Current fuel prices at airports on or near your route pop right up on the planner. Just select one along the yellow section of your course and the planner reroutes you and includes the fuel stop. Best of all, you can email the route to your iPad or android tablet and it will interface into several popular moving map apps with a few clicks.

Then go fly your plan. You’ll thank me for counseling you to land a little more often on a long cross-country about the time you step out onto the ramp and stretch your legs a bit. Or maybe when you are availing yourself of those free homemade cookies and a fresh cup of coffee served up with a smile in so many of our wonderful independent FBOs. The difference in your overall en route time won’t change much, but the quality of the day is likely to be just a bit higher.

Give it a try. Let’s work to make 2016 the year that out-of-fuel accidents suddenly disappear from the NTSB’s graph of stupid-pilot-tricks.

 

Misfueled!

Monday, January 11th, 2016
Decals

Jet fuel contamination of avgas remains a killer.

On March 2, 2008, a turbonormalized Cirrus SR22 was destroyed when it crashed shortly after takeoff in Rio de Janiero, Brazil, killing all four people aboard. Shortly after the aircraft departed from runway 20, the airplane’s engine lost power, and the aircraft hit a building and exploded. Further investigation revealed that the aircraft had been refueled with Jet A instead of 100LL.

This report reminded me of an incident 16 years earlier during which my own 1979 Cessna T310R was misfueled with Jet A at San Carlos (Calif.) Airport, a busy GA airport just south of SFO. Fortunately, I caught the (mis)fueler in the act, red handed. Had I not been lucky enough to do that, I probably wouldn’t be writing this column.

Normally, I either fuel my aircraft myself (at a self-serve pump) or watch it being fueled (when avgas is supplied by truck). On this occasion, I’d radioed for the fuel truck and waited patiently for it to arrive. After 10 minutes of waiting, Mother Nature intervened and compelled me to walk into the terminal building in rather urgent search of a loo. By the time I took care of my pressing business and returned to the ramp, there was a fuel truck parked by my airplane and a lineperson pumping fuel into my right main tank.  As I approached the aircraft, I observed to my horror that the truck was labeled “JET A.”

Theoretically impossible

At first, I was not too worried, because I believed that misfueling my airplane with Jet A was physically impossible. That’s because in 1987 (the year I purchased by T310R), all turbocharged twin Cessnas became subject to Airworthiness Directive AD 87-21-02 which mandated installation of restrictor ports on all fuel filler openings. The restrictor ports were designed to make it impossible to insert an industry standard Jet A nozzle, while accommodating the smaller diameter avgas nozzle.

The AD was issued because the FAA became aware that a large number of misfueling indicents and accidents were occuring in turbocharged aircraft. These aircraft typically were prominentaly decorated by the factory with the word “Turbo” and apparently linepeople were confusing it with “Turbine” and pumping Jet A into the tanks.

So the FAA mandated that jet fuel trucks install a wide spade-shaped fuel nozzle, and that vulnerable airplanes (like turbocharged twin Cessna) have restrictor ports installed into which the wide jet fuel nozzle would not fit. This made misfueling of piston aircraft with jet fuel theoretically impossible. (They also said that it’s theoretically impossible for bumblebees to fly.)

But as I arrived at my airplane, I discovered that indeed my left main tank had been topped with Jet A. How was this possible? A subsequent investigation by the local FSDO revealed that the Jet A fuel truck at San Carlos Airport had not been fitted with the correct spade-type nozzle. (I suspect they got in trouble for that.)

Jet-A nozzle vs. avgas nozzle

Jet fuel nozzles have a wide spade top that is theoretically incapable of being inserted in an avgas fuel filler equipped with a restrictor ring—but don’t count on it!

Undoing the damage

I spent literally hours trying to find an A&P on the field that would assist me in purging the fuel system of its witches’ brew of 100LL and Jet A. That turned out to be surprisingly difficult. The fueling company was falling all overitself to be helpful (because I’m sure they feared a big lawsuit) but they had no mechanics or maintenance capabilities. There were several maintenance shops on the field, but none wanted to go near my contaminated airplane, clearly afraid of the potential liability exposure. Finally, I persuaded one maintenance manger to help me out after writing and signing an omnibus waiver absolving the shop and its mechanics of any liability in connection with their work on my aircraft.

The purging process itself was quite an eye opener. We drained the tanks as completely as possible, putting the noxious effluent into a 55-gallon drum provided by the fueling company (who had agreed to deal with the costly disposal of the nasty stuff). We disconnected the fuel line going to the engine-driven fuel pump and drained all the fuel from that as well.

Next, 5 gallons of 100LL (donated gratis by the fueling company) was poured into the main tank, and then pumped through the system using the electric boost pump and drained from the disconnected fuel line into a 5-gallon bucket.  The fuel in the bucket was tested for Jet A contamination using the paper-towel test: A few drops are placed on a paper towel and allowed to evaporate completely. Pure 100LL will not leave an oily ring on the towel, but even small amounts of Jet A contamination will leave an obvious ring. The stuff in the bucket flunked the test.

Another 5 gallons of 100LL were poured into the tank, and the process repeated. Once again, it flunked the paper-towel test. We had to repeat the procedure three more times before we were satisfied that the system was essentially kerosine-free. We reconnected the fuel line, cowled up the engine, the fueling company then topped off the airplane (again gratis), and I was finally good to go…fully six hours after the misfueling incident.

Restrictor filler & GATS jar

Be sure all your fuel filler ports have restrictor rings. The big GATS jar (available at Sportys, Aircraft Spruce, and elsewhere) does a far better job than the slim screwdriver-type testers.

Lessons learned

I learned some important lessons that day. Perhaps the most important is that it’s impossible to distinguish pure avgas and a mixture of avgas and Jet A by color alone. My main tanks had been about half-full of avgas, so after the misfueling they contained roughly a 50-50 mix. If you take a jar full of pure 100LL and another jar full of a 50-50 mix of 100LL and avgas, I guarantee you will not be able to see any difference in color or clarity between the two.

I hadn’t realized that before. I has always been taught that you sump the tanks and observe the color—100LL is blue and Jet A is straw color. What I was not taught is that a mixture of 100LL and Jet A is also blue and that you simply can’t tell the difference visually. In retrospect, I shudder to think what would have happened had I not caught that Jet A truck in front of my airplane.

I was also taught that since Jet A is significantly heavier than avgas (6.7 lbs/gal versus 5.85 lbs/gal), the Jet A and 100LL will separate just like oil and water, with the Jet A at the bottom (where the sump drain is) and the 100LL at the top. That’s true, but only if the contaminated fuel is allowed to sit for hours and hours. It turns out that 100LL and Jet A mix quite well, and the mixture takes a surprisingly long time to separate.

There are at least two good ways to distinguish pure 100LL from kerosine-contaminated 100LL. One is by odor: Jet A has a very distinctive odor that is detectable even in small concentrations. The other (and probably best) is by using the paper-towel test: Pour a sample on a paper towel (or even a sheet of white copy paper), let it evaporate, and see if it leaves an oily ring.

Nasty stuff

What effect does Jet A contamination have on a piston engine? Enough to ruin your day.

You can think of Jet A as being fuel with a zero octane rating. Any piston engine that tries to run on pure Jet A will go into instant destructive detonation. However, in real life, we almost never encounter that situation because the tanks (at least the main tank used for takeoff) is almost never completely dry when the aircraft is misfueled.

Therefore, the real-world problem is not running on pure Jet A, but on running on a mixture of 100LL and Jet A.  Depending on the mixture ratio of the two fuels, the effective octane rating can be anything between 0 and 100. A mixture with a lot of Jet A and just a little 100LL might be detectable during runup.  A 50-50 mix might not start to detonate until full power is applied, and the engine might fail 30 seconds or 3 minutes after takeoff. Just a little Jet A contamination might produce only moderate detonation that might not be noticed for hours or even weeks. Like so many other things in aviation, “it all depends.”

The Cirrus SR22 accident in Rio reminds us that the problem of misfueling is still with us, despite all the efforts of the FAA to eradicate it. We need to be vigilant. Always watch your airplane being fueled if you possibly can. Make sure its fuel filler ports are equipped with restrictor rings. Don’t just look at the fuel you drain from your sumps—sniff it, and when in doubt, pour it on a paper towel.

The Normalization of Deviance

Monday, December 7th, 2015

Like many pilots, I read accident reports all the time. This may seem morbid to people outside “the biz”, but those of us on the inside know that learning what went wrong is an important step in avoiding the fate suffered by those aviators. And after fifteen years in the flying business, the NTSB’s recently-released report on the 2014 Gulfstream IV crash in Bedford, Massachusetts is one of the most disturbing I’ve ever laid eyes on.

If you’re not familiar with the accident, it’s quite simple to explain: the highly experienced crew of a Gulfstream IV-SP attempted to takeoff with the gust lock (often referred to as a “control lock”) engaged. The aircraft exited the end of the runway and broke apart when it encountered a steep culvert. The ensuing fire killed all aboard.

Sounds pretty open-and shut, doesn’t it? There have been dozens of accidents caused by the flight crew’s failure to remove the gust/control lock prior to flight. Professional test pilots have done it on multiple occasions, ranging from the prototype B-17 bomber in 1935 to the DHC-4 Caribou in 1992. But in this case, the NTSB report details a long series of actions and habitual behaviors which are so far beyond the pale that they defy the standard description of “pilot error”.

Just the Facts

Let me summarize the ten most pertinent errors and omissions of this incident for you:

  1. There are five checklists which must be run prior to flying. The pilots ran none of them. CVR data and pilot interviews revealed that checklists simply were not used. This was not an anomaly, it was standard operating procedure for them.
  2. Obviously the gust lock was not removed prior to flying. This is a very big, very visible, bright red handle which sticks up vertically right between the throttles and the flap handle. As the Simon & Chabris selective attention test demonstrates, it’s not necessarily hard to miss the gust lock handle protruding six inches above the rest of the center pedestal. But it’s also the precise reason we have checklists and procedures in the first place.
  3. Flight control checks were not performed on this flight, nor were they ever performed. Hundreds of flights worth of data from the FDR and pilot interviews confirm it.
  4. The crew received a Rudder Limit message indicating that the rudder’s load limiter had activated. This is abnormal. The crew saw the alert. We know this because it was verbalized. Action taken? None.
  5. The pilot flying (PF) was unable to push the power levers far enough forward to achieve takeoff thrust. Worse, he actually verbalized that he wasn’t able to get full power, yet continued the takeoff anyway.
  6. The pilot not flying (PNF) was supposed to monitor the engines and verbally call out when takeoff power was set. He failed to perform this task.
  7. Aerodynamics naturally move the elevator up (and therefore the control column aft) aft as the airplane accelerates. Gulfstream pilots are trained to look for this. It didn’t happen, and it wasn’t caught by either pilot.
  8. The pilot flying realized the gust lock was engaged, and said so verbally several times. At this point, the aircraft was traveling 128 knots had used 3,100 feet of runway; about 5,000 feet remained. In other words, they had plenty of time to abort the takeoff. They chose to continue anyway.
  9. One of the pilots pulled the flight power shutoff handle to remove hydraulic pressure from the flight controls in an attempt to release the gust lock while accelerating down the runway. The FPSOV was not designed for this purpose, and you won’t find any G-IV manual advocating this procedure. Because it doesn’t work.
  10. By the time they realized it wouldn’t work and began the abort attempt, it was too late. The aircraft was traveling at 162 knots (186 mph!) and only about 2,700 feet of pavement remained. The hydraulically-actuated ground spoilers — which greatly aid in stopping the aircraft by placing most of its weight back on the wheels to increase rolling resistance and braking efficiency — were no longer available because the crew had removed hydraulic power to the flight controls.

Industry Responses

Gulfstream has been sued by the victim’s families. Attorneys claim that the gust lock was defective, and that this is the primary reason for the crash. False. The gust lock is designed to prevent damage to the flight controls from wind gusts. It does that job admirably. It also prevents application of full takeoff power, but the fact that the pilot was able to physically push the power levers so far forward simply illustrates that anything can be broken if you put enough muscle into it.

The throttle portion of the gust lock may have failed to meet a technical certification requirement, but it was not the cause of the accident. The responsibility for ensuring the gust lock is disengaged prior to takeoff lies with the pilots, not the manufacturer of the airplane.

Gulfstream pilot and Code7700 author James Albright calls the crash involuntary manslaughter. I agree. This wasn’t a normal accident chain. The pilots knew what was wrong while there was still plenty of time to stop it. They had all the facts you and I have today. They chose to continue anyway. It’s the most inexplicable thing I’ve yet seen a professional pilot do, and I’ve seen a lot of crazy things. If locked flight controls don’t prompt a takeoff abort, nothing will.

Albright’s analysis is outstanding: direct and factual. I predict there will be no shortage of articles and opinions on this accident. It will be pointed to and discussed for years as a bright, shining example of how not to operate an aircraft.

In response to the crash, former NTSB member John Goglia has called for video cameras in the cockpit, with footage to be regularly reviewed to ensure pilots are completing checklists. Despite the good intentions, this proposal would not achieve the desired end. Pilots are already work in the presence of cockpit voice recorders, flight data recorders, ATC communication recording, radar data recording, and more. If a pilot needs to be videotaped too, I’d respectfully suggest that this person should be relieved of duty. No, the problem here is not going to be solved by hauling Big Brother further into the cockpit.

A better model would be that of the FOQA program, where information from flight data recorders is downloaded and analyzed periodically in a no-hazard environment. The pilots, the company, and the FAA each get something valuable. It’s less stick, more carrot. I would also add that this sort of program is in keeping with the Fed’s recent emphasis on compliance over enforcement action.

The Normalization of Deviance

What I, and probably you, are most interested in is determining how well-respected, experienced, and accomplished pilots who’ve been through the best training the industry has to offer reached the point where their performance is so bad that a CFI wouldn’t accept it from a primary student on their very first flight.

After reading through the litany of errors and malfeasance present in this accident report, it’s tempting to brush the whole thing off and say “this could never happen to me.” I sincerely believe doing so would be a grave mistake. It absolutely can happen to any of us, just as it has to plenty of well-trained, experienced, intelligent pilots. Test pilots. People who are much better than you or I will ever be.

But how? Clearly the Bedford pilots were capable of following proper procedures, and did so at carefully selected times: at recurrent training events, during IS-BAO audits, on checkrides, and various other occasions.

Goglia, Albright, the NTSB, and others are focusing on “complacency” as a root cause, but I believe there’s a better explanation. The true accident chain on this crash formed over a long, long period of time — decades, most likely — through a process known as the normalization of deviance.

Social normalization of deviance means that people within the organization become so much accustomed to a deviant behavior that they don’t consider it as deviant, despite the fact that they far exceed their own rules for the elementary safety. People grow more accustomed to the deviant behavior the more it occurs. To people outside of the organization, the activities seem deviant; however, people within the organization do not recognize the deviance because it is seen as a normal occurrence. In hindsight, people within the organization realize that their seemingly normal behavior was deviant.

This concept was developed by sociologist and Columbia University professor Diane Vaughan after the Challenger explosion. NASA fell victim to it in 1986, and then got hit again when the Columbia disaster occurred in 2003. If they couldn’t escape its clutches, you might wonder what hope we have. Well, for one thing, spaceflight in general and the shuttle program in particular are specialized, experimental types of flying. They demand acceptance of a far higher risk profile than corporate, charter, and private aviation.

I believe the first step in avoiding “normalization of deviance” is awareness, just as admitting you have a problem is the first step in recovery from substance addiction. After all, if you can’t detect the presence of a problem, how can you possibly fix it?

There are several factors which tend to sprout normalization of deviance:

  • First and foremost is the attitude that rules are stupid and/or inefficient. Pilots, who tend to be independent Type A personalities anyway, often develop shortcuts or workarounds when the checklist, regulation, training, or professional standard seems inefficient. Example: the boss in on board and we can’t sit here for several minutes running checklists; I did a cockpit flow, so let’s just get going!
  • Sometimes pilots learn a deviation without realizing it. Formalized training only covers part of what an aviator needs to know to fly in the real world. The rest comes from senior pilots, training captains, and tribal knowledge. What’s taught is not always correct.
  • Often, the internal justification for cognizant rule breaking includes the “good” of the company or customer, often where the rule or standard is perceived as counterproductive. In the case of corporate or charter flying, it’s the argument that the passenger shouldn’t have to (or doesn’t want to) wait. I’ve seen examples of pilots starting engines while the passengers are still boarding, or while the copilot is still loading luggage. Are we at war? Under threat of physical attack? Is there some reason a 2 minute delay is going to cause the world to stop turning?
  • The last step in the process is silence. Co-workers are afraid to speak up, and understandably so. The cockpit is already a small place. It gets a lot smaller when disagreements start to brew between crew members. In the case of contract pilots, it may result in the loss of a regular customer. Unfortunately, the likelihood that rule violations will become normalized increases if those who see them refuse to intervene.

The normalization of deviance can be stopped, but doing so is neither easy or comfortable. It requires a willingness to confront such deviance when it is seen, lest it metastasize to the point we read about in the Bedford NTSB report. It also requires buy-in from pilots on the procedures and training they receive. When those things are viewed as “checking a box” rather than bona fide safety elements, it becomes natural to downplay their importance.

Many of you know I am not exactly a fan of the Part 121 airline scene, but it’s hard to argue with the success airlines have had in this area. When I flew for Dynamic Aviation’s California Medfly operation here in Southern California, procedures and checklists were followed with that level of precision and dedication. As a result, the CMF program has logged several decades of safe operation despite the high-risk nature of the job.

Whether you’re flying friends & family, pallets of cargo, or the general public, we all have the same basic goal: to aviate without ending up in an embarrassing NTSB report whose facts leave no doubt about how badly we screwed up. The normalization of deviance is like corrosion: an insidious, ever-present, naturally occurring enemy which will weaken and eventually destroy us. If we let it.

The Day After the Holiday: Flying Home Safely

Monday, November 30th, 2015

The day before a holiday, given there are blue skies, is a silly, noisy day in the airpark. People are on the move. My pilot neighbors who have decided to fly to family are loading up and heading out, sometimes en masse, wisely using their aircraft to avoid what can be dangerously packed highways of travelers, and miserably packed commercial airline flights.

Funny, I don’t worry so much about them on the day they leave out of here. The day after the holiday, though, I admit to fretting a little. Why? Statistics.

Weather is the great delineator on the flight home after a holiday.

Weather is the great delineator on the flight home after a holiday.

It is much easier to decide to stay home for the holidays when you are still in your driveway, contemplating the weather, than it

is to imagine staying on at Aunt Fran’s or Grandma’s, where you may be packed into an expensive hotel room, or maybe the basement spare bedroom (probably no wifi down there, either). The NTSB annals are full of accidents and incidents that happen on the backside of the holiday curve, when people are saturated with food, family, good times, and sometimes rushing to get back for work, school or other ordinary pressures. Suddenly pilots everywhere feel that pinch at the base of the neck and catch themselves almost universally thinking, “Well, maybe the weather isn’t really that bad. Maybe the ice won’t be there, maybe the thunderstorms will drift off the route… and maybe the winds aren’t as strong as they are forecasting.”

That is the essence of get-home-itis, and there is not a one of us immune to it. Pilots can, however, allow common sense to sit on the other shoulder and balance such musings. For every “maybe the forecast is off,” one has to imagine “yeah, it could be turn out worse than what they are saying.” After all, a forecast is only a guess of how the weather gods will play out the day. A sophisticated guess based on lots of data, but a guess, nevertheless.

For every “I have got to get home and be at work tomorrow,” there has to be, “this is what personal days and telecommuting are made for.” Building a weather day or two into holiday vacations can alleviate all of these ruminations. I do it as a matter of course. The plus is that if I get home the day I expected to get home I have a day to decompress before ordinary life reaches out and grabs me again. And if I need the extra day because home or en route weather is bad? Well, I’ve got it.

Another good hedge is a back up plan, such as refundable airline tickets (yep, pricey, but only if you need to use them), or a car rental that you can cancel last minute. I’ve used them both to get where I needed to be when the weather prevented me from flying myself.

And what about the “look-see” approach to flying on marginal or worse weather days? 14 CFR Part 91 leaves pilots a lot of leeway on planning flights when the weather might not be at minimums upon reaching the destination. I’m pragmatic on this one. If you are a current pilot in a well-equipped aircraft who has lots of experience with the type of weather you’d like to “look-see” well, run it through your common sense rubric. If it passes, plan the flight with several “outs,” places you’ll divert to if needed. The go ahead and give the flight a try. Weather is a dynamic beast, and conditions may be better than forecast, or worse. You’ll know when you are up there, hopefully deviating around it or diverting to avoid it. Good luck.

Ultimately the key to short circuiting the day-after get-home-itis syndrome in aviation is proper planning, preparation, and of course, a realistic understanding of your aircraft and your own capabilities. Pilots, know thyself. Fly safe out there!

Why I fly high

Monday, November 23rd, 2015

I take a lot of long trips in my Cessna T310R, and more than half of them involve cruising up in the high teens and low Flight Levels, simply because those are the altitudes at which my airplane is happiest, fastest, and most efficient. But from what I’ve been able to tell, the great majority of piston pilots shy away from using the high-altitude capabilities of their airplanes. Most pilots of normally aspirated airplanes seem to confine most of their flying to altitudes of 10,000’ and below, and even many pilots of unpressurized turbocharged airplanes like mine have never flown in the Flight Levels. It’s even surprising how many pilots of pressurized birds seem averse to flying much above the low teens.

That’s a shame, because it’s at the high end of the altitude spectrum that most of our airplanes achieve their best efficiency—and in many cases, their best speed as well. I’m not just talking about turbocharged airplanes. Most normally-aspirated birds are perfectly capable of cruise altitudes well into the teens.

Look at a plain-vanilla, fixed-gear, normally-aspirated Cessna Skylane:

Cessna 182Q Range Profile

Cessna 182Q Skylane range profile page from POH.

At a low altitude like 4,000’, maximum cruise speed is 139 KTAS at 75% power. Continue climbing until the airplane “runs out of throttle” at 8,000’ and max cruise climbs to 144 KTAS. That extra 5 knots will save you 9 minutes on an 800 NM trip when you take the extra climb into account. (5:38 instead of 5:47, no big deal).

Continue climbing to 12,000’ and max cruise drops back to 139 KTAS (same as at 4,000’), but at a much more fuel-efficient 64% power (which is all you can get at that altitude with wide-open throttle). The same 800 NM trip will take 6 more minutes at 12,000’ than at 4,000’ (5:53 to be exact) because of the longer climb, but burn a whopping 12 gallons less fuel in the process—if avgas costs $5/gallon, that’s $60—and increase IFR range by a full hour and 130 NM!

How far can we take this? Don a cannula and climb to 16,000’—high enough to fly right over the Front Range of the Rocky Mountains IFR—and max cruise drops to a still-respectable 130 KTAS at a miserly 53% power. Because it takes a Skylane nearly 40 minutes to climb from sea level to 16,000’ at max gross, the 800 NM trip will take a half-hour longer than at 12,000’ (6:23), but will save 20 gallons ($100?) and increase IFR range by a full two hours compared to our 4,000’ benchmark.


Cruise
Altitude
Max
Cruise
IFR
Range

To fly an
800 NM Trip

4,000 139 K 820 NM 5:47 78 gal
8,000 144 K 840 NM 5:38 79 gal
12,000 139 K 950 NM 5:53 67 gal
16,000 130 K 1,040 NM 6:23 59 gal

Normally-aspirated, fixed-gear 182Q
(maximum gross weight, standard day, no wind,
88 gallons, 45 min reserve)


Unless you just happen to like low-and-slow, there’s no logical reason to cruise a Skylane lower than 8,000’ because doing so makes all the numbers worse: cruise speed, trip time, and range.  On the other hand, climbing to 10,000’ or 12,000’ will cost you a negligible amount of time, and reward you with substantially lower fuel burn and increased range.

These calculations are all based on zero-wind, but in real life the winds aloft are often a decisive factor in determining the best altitude to choose. If you’re headed eastbound, odds are you’ll have a tailwind—and the higher you fly, the better it’ll be.

In wintertime, climbing up high to catch favorable winds can pay off spectacularly. In the low-to-mid teens, 50 knot tailwinds are commonplace and a 70 or 80 knot tailwind is possible. Even in summer, when winds tend to be relatively light, going high can pay off. Here are some typical summer winds I pulled off of DUATS:


      6000    9000   12000   18000
 STL 2410+18 2809+12 3110+07 2917-04
 SPI 2510+18 3010+12 3211+07 2919-05
 JOT 2511+17 3012+12 3116+06 2926-07
 EVV 2509+17 3012+11 3216+07 3018-05
 IND 2411+16 3011+11 3114+07 2922-06
 FWA 2312+15 2812+10 2916+06 2926-07
 CVG 2210+15 2809+11 3012+07 3021-05
 CMH 2210+14 2710+10 2914+06 3026-07
 CRW 2108+15 2509+10 2908+06 3225-05
 AGC 2010+12 2510+09 2813+05 2930-09
 EKN 1907+13 2608+09 2810+06 3028-07
 PSB 1911+11 2509+08 2813+04 2930-11
 EMI 9900+11 2905+09 2811+05 2927-10

Even in these docile summertime conditions, we can expect 10 to 15 knots more tailwind component at 16,000’ than at 8,000’, which almost exactly offsets the TAS advantage of the lower altitude (144K vs. 130K). By climbing up high on an eastbound trip, we’ll go just as fast, burn considerably less fuel, and increase our IFR range nearly 400 NM! Not to mention that it’s almost always smoother and cooler up high. What’s not to like?

During the winter, when the winds tend to be stronger, going high on eastbound trips tends to be an even better deal, saving both time and fuel.

For turbos, it’s even better

If you’ve got a turbocharger, the argument for flying high becomes compelling, because the higher you fly in a turbo, the higher your speed, range and efficiency—at least up to the low Flight Levels in most turbocharged airplanes. These birds really shine up in the high teens and low twenties, and pilots who don’t take advantage of this capability don’t know what they’re missing.

For example, take a look at the “Range Profile” page for my Cessna T310R:

Cessna T310R Range Profile

Cessna T310R range profile page from POH.

Starting at 180 KTAS at sea level, max cruise speed at 73.6% power steadily increases with altitude to a relatively blistering 221 KTAS at FL200. (Above that altitude, available power starts dropping off fairly rapidly.)


Cruise Altitude Max
Cruise
IFR
Range
To fly an
800 NM Trip
5,000 190 K 860 NM 4:14 143 gal
10,000 199 K 890 NM 4:04 137 gal
15,000 209 K 930 NM 3:55 131 gal
20,000 221 K 970 NM 3:45 125 gal

Turbocharged, twin-engine Cessna T310R
(73.6% cruise, maximum gross weight  standard day, no wind,
163 gallons, 45 min reserve)


At the same time, range with IFR reserves climbs from 820 NM to 970 NM. Naturally, trip time and fuel burn for the proverbial 800 NM trip both drop accordingly—from 4:14 and 143 gallons at 5,000 to 3:45 and 125 gallons at FL200.

Personally, I don’t push my engines this hard. I almost always throttle back to between 60% and 65% power and settle for around 205 KTAS at FL200 at a miserly fuel burn of 26 gallons/hour, giving me a range of well over 1,000 NM with IFR reserves (or 1,200 NM if I fill my 20-gallon wing locker tank).

Once again, these figures assume no-wind conditions. Add in the wind on an eastbound trip and the results can get downright exciting. In the winter, I’ve seen my groundspeed edge above 300 knots from time to time. That’s fun! During the summer, on the other hand, I’m happy with 230 or 240 on the GPS readout.

Needless to say, you pay the piper going westbound. But if the winds aren’t too strong, it may still pay to go high rather than low. In my airplane, I gain 22 knots of true airspeed by climbing from 10,000’ to FL200. So if the headwind at FL200 is only 10 or 15 knots stronger than at 10,000’ (which is usually the case in summertime), higher is still better.

In wintertime, of course, westbound aircraft are all in the same boat, turbo or non-turbo. We bounce along at the MEA, try not to look at the groundspeed readout, hope the fillings in our teeth don’t fall out, and think about how much fun the eastbound part of the trip was (or will be).

Enjoy the high life!

If you’re one of those pilots who comes from the “I won’t climb higher than I’m willing to fall” school, you’ve got nothing to be embarrassed about. Believe me you’ve got plenty of company. But you’re also missing something really good.

Do yourself a favor: give high a try. It’s cooler and smoother up there. Your airplane flies faster and more efficiently up high. ATC will usually give you direct to just about anywhere. You’re above terrain, obstructions, and often the weather and the ice. The visibility is usually terrific. So are the tailwinds, if you’re lucky enough to be going in the right direction. Try it…you just might like it!

See & Avoid Doesn’t Work

Tuesday, November 10th, 2015

Contemplate the worst scenario that might confront a pilot during a flight. What comes to mind? Fire? Flight control failure? Engine failure? Perhaps it’s flight crew incapacitation, explosive decompression or severe structural damage.

No doubt about it, those all fall into the Very Bad Day category. But there’s one that can be even worse: a mid-air collision. That’s because it can involve all the problems listed above — at the same time. And since the parties involved aren’t aware of the impending crunch until it’s too late, the mid-air is usually accompanied by a violent element of surprise, confusion, and initial denial.

You might think fatal mid-airs are rare events, and from a purely statistical standpoint I’d have to agree. According to the 2010 Nall Report, a fatal mid-air occurs about once every 8 million flight hours. Think of it as the roughly the same odds as winning the lottery or being struck by lighting. Doesn’t sound so bad, does it? A typical GA pilot might accumulate but thousand or so hours over a full lifetime of flying.

So what’s there to worry about? Plenty. The “big sky” theory may sound good, but it doesn’t hold up very well under close scrutiny. It’s true that the navigable atmosphere over the United States alone is massive — about 20 million cubic miles — and there are relatively few airplanes in the sky. Even on those occasions where a collision is possible, modern tools such as radar, TCAS, VHF communication, and anywhere between two and four sets of eyeballs almost always succeed in averting the disaster. If aircraft were equally distributed throughout the atmosphere, the “big sky” idea would be pretty comforting.

But airplanes cluster near airports, large cities, and on thin slices of the sky known as “airways”. For the VFR types, airspace and terrain often crowd planes into small swaths of the air in places like the Santa Ana Canyon or Banning Pass. The sky is much like the ground: vehicles stick to relatively confined spaces and that makes collisions a serious hazard.

Since we’re on the topic of statistics, let me give you a few of my own: I personally know two people who have been struck by lightning, and a winning lottery ticket was recently sold not 300 feet from my front door. Hey, crazy stuff happens. But unlike lighting strikes and golden tickets, we’re not all facing the same odds. The risk profile varies widely depending on the type of flying you’re doing.

For example, flight instruction is frequently a factor; thirty-seven percent of mid-airs occur with a CFI on board. Many instructional flights happen near airports, and as previously mentioned, that’s where other airplanes tend to congregate. On the other hand, if you fly airliners, your risk of a mid-air is rather low because the aircraft itself is large and easy to see, you’re always flying IFR, and the most sophisticated traffic avoidance hardware available is always installed. Airliners also spend most of their time in cruise and are in constant radar contact with ATC.

Midair collisions are almost as old as powered flight itself.  This B-17 collided with a German fighter over Tunisia in 1943.

Midair collisions are almost as old as powered flight itself. This B-17 collided with a German fighter over Tunisia in 1943.

Think it can’t happen to you? Think again. Some very talented, capable, and well-respected pilots have been involved in mid-air collisions. I know a guy who was involved in one while flying a large-cabin, TCAS-equipped business jet under Instrument Flight Rules. Alan Klapmeier, the founder of Cirrus Aircraft, was in one too. Richard Collins, famed Flying columnist, was in a mid-air. Speaking of Flying, the recent Editor-in-Chief owns a very nice Cirrus SR-22 which was in a mid-air. And lastly, a decade ago I was in a mid-air collision myself.

I’ll save the blow-by-blow (no pun intended) on that for another day. The point I’m trying to make is that the odds of a mid-air are probably greater than you think, especially if you live in a populated metropolitan area and fly VFR. If you’ve ever had a close encounter with another airplane in flight, you were only separated from “those who have” by nothing more than a miniscule sliver of plain old luck.

Think about that for a moment.

This may be hard to believe, but there is some good news. For one thing, mid-airs are not always fatal. It seems intuitive that most collisions would involve fatalities, but all the people I cited above survived, including (obviously) myself. Also, technology is rapidly advancing, from cheap TCAD boxes to airframe parachutes to super-bright LED exterior lighting.

The question we should all be asking ourselves is how we avoid ending up in a mid-air, fatal or otherwise. If you refer to official guidance from the FAA, the answer is to simply look out the window and spot the other airplane before it hits you. This technique, referred to as “see and avoid”, is still considered adequate for preventing collisions. Here are a couple of passages from Chapter 1 of the Airplane Flying Handbook:

The “See and Avoid” concept relies on knowledge of the limitations of the human eye, and the use of proper visual scanning techniques to help compensate for these limitations. The importance of, and the proper techniques for, visual scanning should be taught to a student pilot at the very beginning of flight training.

Proper clearing procedures, combined with proper visual scanning techniques, are the most
effective strategy for collision avoidance.

Other FAA publications, ranging from the Aeronautical Information Manual, to Advisory Circulars like AC-90-48 (“Pilot’s Role in Collision Avoidance”) will give you the same spiel: “see and avoid will keep you safe”. And it will! Until it doesn’t.

From my perspective as someone who’s been in a mid-air and who was using proper clearing and scanning techniques at the time, I take it as gospel that “see & avoid” won’t always do the trick. I’m just one guy, of course. But many others — some institutional in nature — just happen to agree with me.

For example, a couple of years ago Canada’s Transportation Safety Board issued an accident report on a mid-air collision between a Beech V-35B Bonanza and a PA-28 Cherokee over northern Virginia. Canada was tasked with performing the investigation because the pilots of the Bonanza were employees of the NTSB while the Cherokee was piloted by an employee of the FAA.

I won’t keep you in suspense. The conclusion from the TSB was that the “see and avoid” concept was inadequate. They even quoted a 1991 report produced by the Australian Transport Safety Bureau which provides an overview of the major factors that limit the effectiveness of the see-and-avoid principle in preventing mid-air collisions, as well as a 2005 scientific study published in Aviation, Space, and Environmental Medicine which came to the same conclusions.

The main points:

  • Cockpit workload and other factors reduce the time that pilots spend in traffic scans, and even when pilots are looking out, there is no guarantee that other aircraft will be sighted.
  • Visual scanning involves moving the eyes in order to bring successive areas of the visual field onto the small area of sharp vision in the center of the eye. The process is frequently unsystematic and may leave large areas of the field of view unsearched.
  • A thorough, systematic search is not a solution as in most cases it would take an impractical amount of time.
  • The physical limitations of the human eye are such that even the most careful search does not guarantee that traffic will be sighted.
  • The pilot’s functional visual field contracts under conditions of stress or increased workload. The resulting ‘tunnel vision’ reduces the chance that an approaching aircraft will be seen in peripheral vision.
  • The human visual system is better at detecting moving targets than stationary targets, yet in most cases, an aircraft on a collision course appears as a stationary target in the pilot’s visual field.
  • An approaching aircraft, in many cases, presents a very small visual angle until a short time before impact.
  • Complex backgrounds such as ground features or clouds hamper the identification of aircraft via a visual effect known as ‘contour interaction’. This occurs when background contours interact with the form of the aircraft, producing a less distinct image.
  • Even when an approaching aircraft has been sighted, there is no guarantee that evasive action will be successful.
  • Because of its many limitations, the see-and-avoid concept should not be expected to fulfill a significant role in future air traffic systems.
  • Transportation Safety Board of Canada aviation investigation report A06O0206 identified that there is a high risk of mid-air collisions in congested airspace when aircraft are not alerted to the presence of other aircraft and rely solely on the see‑and-avoid principle.

There’s one more area of the TSB report which is worth of quotation. In it, they reference a British Royal Air Force study into mid-air collisions. If you’re keeping score, that’s the third sovereign agency to reach the conclusion that “see and avoid” is inadequate. Yet our own FAA, which oversees about 80% of the world’s aircraft and almost all of the high traffic density airspace, still officially proclaims that one can look out the window and see everything that needs to be seen.

This accident has demonstrated yet again that relying solely on the see-and-avoid principle to avoid collisions between aircraft operating under visual flight rules (VFR) in congested airspace is inadequate.

A number of international studies have addressed the overall issue of the effectiveness of the see-and-avoid principle, as well as the risks of collision associated with this principle. All acknowledged the underlying physiological limitations at play and that, when mid-air collisions occur, “failure to see-and-avoid is due almost entirely to the failure to see.”

One study stated that “our data suggest that the relatively low (though unacceptable) rate of mid-air collisions in general aviation aircraft not equipped with TCAS [traffic alert and collision avoidance system] is as much a function of the ‘big sky’ as it is of effective visual scanning.”

A British Royal Air Force study into mid-air collisions, which were deemed to be random, found that the probability of conflict is proportional to the square of the traffic density, and recommended avoiding altitude restrictions that concentrate traffic.

Measures such as improving aircraft conspicuity, pilot scanning techniques, and pilot traffic awareness can reduce risks, but they do not overcome the underlying physiological limitations that create the residual risk associated with a see-and-avoid method.

It’s obvious that “see and avoid” cannot, by itself, ensure our safety. If it could, there’d be no need for TCAS or most of our controlled airspace (both of which came about because of high-profile mid-air collisions, I might add!). I’m not necessarily in favor of mandating any additional equipment, airspace, or restrictions, especially on general aviation. But it’s clear that serious changes are needed in how collision avoidance is taught, especially as it concerns “see and avoid”. The concept has serious limitations which must be understood so the pilot-in-command can make educated decisions about how — or even if — they want to mitigate those risks.

I sincerely hope our nation’s regulatory and safety organizations will eventually acknowledge what we all know to be true: “see and avoid”, while a good start and certainly a vital part of collision avoidance, is simply not sufficient to ensure traffic separation.

When Good Enough Just Isn’t

Wednesday, October 21st, 2015
kern

Tony Kern, CEO of Convergent Performance

I spent much of last week in Wichita, the nation’s air capitol, to attend an annual safety trek known as the Safety Standdown, jointly hosted by Bombardier and the National Business Aviation Association (NBAA).

This 19th edition of the event drew about 450 attendees and another 1,100 online to listen to a host of smart, savvy aviators speak passionately about the need to head off accidents before they happen.

Before we prang an airplane applies to all of us and certainly doesn’t sound like rocket science anyway, does it? Read through the latest NTSB statistics and you’ll realize this simple philosophy apparently was rocket science to the pilots of the 566 GA accidents in the first eight months of 2014. The question of course is why?

Now if I start talking about professionalism in the midst of these accidents statistics most readers will think I’m referring to big-iron pilots paid to fly.

On the surface, professionalism’s a tag that on the surface doesn’t seem to fit with an Archer or a Cirrus driver, but it should, because thinking professionally, according to Dr. Tony Kern of Convergent Performance, can shape how we fly. At the Safety Standdown, Kern was an engaging, take no prisoners, kind of speaker and his logic is tough to refute once you’ve listened and let the philosophy sink in (watch his opening session talk).

Consider the Practical Test Standards, a booklet anyone who’s earned a pilot certificate knows well. It’s all about the limits the flight test examiner expects us to work with … how many feet + or – an applicant can stray in altitude, heading and airspeed for example. Meet the minimum standards for the pilot certificate and you’re probably home free. Airline and biz jet pilots fly to their certificate standards during their annual recurrent training too. They’re just checked once or twice a year. (more…)

GA pilots evaluate ADS-B options

Wednesday, August 26th, 2015

I’ve been on the hunt since AirVenture for evidence that ADS-B is really the future of air traffic separation and services. And, having flown from south Florida to Lake Superior, to Kalispell, Montana, and back, I’ve got news.

ADS-B is designed both to separate traffic and provide inflight weather information.

ADS-B is designed both to separate traffic and provide inflight weather information.

Aviators are adopting ADS-B. Not in droves, mind you, but being ADS-B equipped myself, I can see the other ADS-B aircraft on my display screen, and there are more of them than ever before. Along the entire trip there was only an hour in Wyoming, at low altitude, where I did not have ADS-B coverage.

No, we aviators are not keen on dropping money for avionics we aren’t certain we’ll be required to use. I mean, we resisted Mode C until the veils were dropped over Class B airspace and spun down to the ground (I actually know a couple of anarchists out there still flying Mode A transponders).

ADS-B is particularly problematic because the specs kept changing. They are, according to the FAA, set in stone now, though. For aircraft operating above 18,000 ft and/or outside the U.S. a Mode-S ADS-B transmitter (1090ES) is needed. If you stay in the U.S. and below Class A airspace you can stick with a UAT transceiver. Of course, we’ve seen stone change, too. And ADS-B is not without its weaknesses. That said, the most recent interaction I had with the FAA was on point–adapt, or you’ll be left out of controlled airspace above 10,000 ft and Class B and C airspace, they told me. On January 1, 2020. The date’s not moving. That’s the FAA’s story and all manner of individuals I spoke with are sticking to it.

The L-3 Lynx installed in a typical general aviation avionics stack.

The L-3 Lynx installed in a typical general aviation avionics stack.

These kinds of rock-solid statements by the FAA have begun to bring consternation to the people who run the avionics companies. Why? Because with less than five years left to meet the mandate, they know it will be a struggle to equip all of the aircraft in the U.S. that might need this technology with this technology.

There are only so many avionics shops. And when it comes to the higher end equipment, business jets and helicopters sporting integrated digital avionics, for instance, there are even fewer designated service centers that can handle the job. Really, though, that isn’t the crux of the problem.

At the core of the problem are older high-end integrated panels. A TSO authorization, issued in accordance with 14 CFR 21 subpart O, is not required to upgrade them. Yet, ADS-B Out systems and equipment installed or used in type-certificated aircraft must have a design approval issued under 14 CFR 21 (or must be installed by field approval, if appropriate). To upgrade these legacy avionics is proving to take far too long. That’s a lot of lost revenue and inefficiency for the companies, mostly small-to-medium businesses, that own them. And that is before the cost of equipping is considered in the mix.

Some OEMs are actually trying to persuade these aircraft owners to trade up to ADS-B and ADS-C equipped aircraft–new aircraft. Great idea on the surface, if it wasn’t for the economy. Companies are cautious after 2008. They are not easily coaxed into new acquisitions. They might be more easily convinced by their own finance departments to shed the flight department altogether instead of buying new equipment–something they did in droves in 2008-9.

Back in my light airplane world the news is not quite as bad, until you get to older light aircraft, that is. No one wants to put 10 percent or more of the value of the airplane back into the avionics, particularly for one key piece of equipment.

And experimentals? They had the advantage of being able to use less expensive, non-Compliant ADS-B boxes, until recently. The FAA is now telling us that as of January 2016 those early transceivers will no longer receive accurate traffic information. Yes, the FAA is going to make flying LESS safe for those users, at a time when there are still hardly any users on the new system. All without proving that the non-Compliant boxes are a hazard.

I think it is time to get the pens out and start complaining, to your congressman, to your local FSDO, to the FAA at 800 Independence Avenue. There are a lot of good things about the way ADS-B can change our National Airspace System, but recent declarations from the FAA have me feeling squeamish about the execution of the transition to this new system. What do you think?

The next revolution in general aviation

Wednesday, August 5th, 2015

Just about exactly 103 years ago, Nikola Tesla said: “I am now planning aerial machines devoid of sustaining planes, ailerons, propellers, and other external attachments, which will be capable of immense speeds”. Tesla ran out of money and wasn’t able to produce his craft but it now appears that maybe, just maybe, that his airplane– certainly by other means – may be on the not too distant horizon.

And the first terrestrial application will probably be a general aviation aircraft – at least, that is what the inventor of a radical new engine is saying.

Now this is a long shot – but that’s what thinking about the future involves. And everyone doesn’t agree about it. That too is integral to thinking about potential breakthroughs. But if this one works – and NASA has duplicated the basic concept – then we could be seeing the early indicators of the emergence of a new world

This one is different (like I said) because the EmDrive doesn’t use any traditional fuel. It generates thrust by the reaction of electromagnetic fields in a shaped cavity. You’ve got to generate electricity, for sure, but after that there are no moving parts. The electricity is converted directly into thrust.

Under the headline NASA’s impossible warp EmDrive proves possible: accelerates beams faster than light in a void, ElectronicProducts.com said: “Last summer, NASA made international headlines after finally testing British scientist Roger Shawyer’s ludicrous EmDrive, otherwise known as “the impossible engine,” and determining that the engine produced a minute level of thrust without any propellant. This is major, because it goes against the very laws of physics as defined by Newton’s third law, that is, that every action has an opposite and equal reaction; hence the nickname “the impossible engine.”  “Nearly eight months later, Paul March, an engineer at NASA Eagleworks, reported in a thread on NASASpaceFlight.com (a website devoted to the engineering side of space exploration) that NASA has successfully tested the EmDrive in a vacuum and demonstrated that laser beams fired through the EmDrive’s resonance chamber exhibited fluctuations in velocity, with some beams appearing to surpass the speed of light.”

Now that should get you to the stars . . . or at least Mars. Shawyer thinks Mars is just a couple day flight with his engines.

NASA EmDrive test device

NASA EmDrive test device. Photo courtesy of SPR Ltd.

NASA EmDrive test device. Photo courtesy of SPR Ltd.

Shawyer says the first terrestrial applications will probably be for general aviation vehicles. The EmDrive website elaborates:

“The ultimate spin-off from space technology will occur when second generation lift engines are employed in terrestrial transport applications. Typically 3 tonnes of lift could be obtained from 1kW of microwave power. Liquid hydrogen would be used for cooling the lift engine and for powering the auxiliary engines. Thus the essential low cost, non-polluting components for large scale utilization are readily achievable. A future low energy transport infrastructure, no longer dependent on wings and wheels would now seem possible.”

Did you follow that? They say 6,000 pounds of lift could be generated by about the equivalent of 1.4 horsepower of generation power. That would change things.

Here’s an interesting interview with the inventor. Click on the picture below to watch it.

So you’ve got great new engines – now, what does the rest of the craft look like?

In the last couple of months a new breakthrough in the design of structures has been announced that has direct applications to future airframe construction. As in the case of the EmDrive, this invention is showing up in another sector – this time automobiles – but you don’t have to be a futurist to see that it could certainly be coming our way.

Here’s the picture that tells the story.

 

Divergent Microfactories presents the Blade in what the company says is the "world's first 3D printed super car" in this handout photo courtesy of Divergent Microfactories.

Divergent Microfactories presents the Blade in what the company says is the “world’s first 3D printed super car” in this handout photo courtesy of Divergent Microfactories.

 

This handsome beast comes from Divergent Microfactories and is interesting by itself (700 HP // 0-60 IN 2.2 SEC // 1,400 LBS).

But the way that they have designed and built this car points directly toward the GA market – starting particularly with experimental airframes. They’ve designed a chassis that is 1/10th the weight of that in a conventionally made car and costs about 10% of a steel one.

Here’s a shot from their website that shows the 3D printed aluminum “nodes” that, coupled with carbon fiber tubes makes a frame (in about 30 minutes), that is stronger than steel ones.

Divergent Microfactories presents a frame member for the Blade in what the company says is the "world's first 3D printed super car" in this handout photo courtesy of Divergent Microfactories.

Divergent Microfactories presents a frame member for the Blade in what the company says is the “world’s first 3D printed super car” in this handout photo courtesy of Divergent Microfactories.

Take a look at this video. The whole chassis is in that bag!

Divergent Microfactories Blade DEBUTS #SOLIDCON 6/24/15 from Divergent Microfactories on Vimeo.

So, one way or another we’re on our way to a revolution . . . and it may be sooner than we think.

If you like this kind of stuff, you might find the talk that I’ll be giving on the future of aviation at NBAA this fall of interest. Come by and say hi if you’re there.