Archive for the ‘Training’ Category

Look Ma … No Hands

Monday, February 23rd, 2015
trim_tab

Photo courtesy FS-Force

As a kid, telling your mom you planned to try something without holding on was a tipoff that something dangerous was surely in the offing.

But when I tell flying students to try letting go of the control wheel or stick at times when I first get to know them, I’m actually trying to help them become better pilots. In my case, it’s all about learning to trim the airplane. Pilots who fail to learn the purpose of the trim tab – that little piece of hinged metal on the end of the elevator – or the movable horizontal stabilizer really are doomed to work way too hard at becoming truly good pilots. I often find though that many instructors don’t take enough time to explain the “why” behind trimming an airplane.

Most simply put, trim tabs help maintain an airplane’s state of balance where all four of those basic forces we learned about as student pilots — power, lift, drag and gravity — come together. Alter any of the forces and you’ll need to re-trim the aircraft to reestablish that balance.

Failure to reestablish balance and the pilot’s forced to hold back or forward pressure on the control wheel to maintain altitude or airspeed. That might not seem like a big deal, but it’s just one more brain function that’s not available for other important things like navigating, looking out the window for other airplanes or drones, or keeping an eye on the weather. (more…)

Flying Backward

Wednesday, February 11th, 2015

“Aviation in itself is not inherently dangerous. But to an even greater degree than the sea, it is terribly unforgiving of any carelessness, incapacity or neglect.”

Aviation insurance pioneer A. G. Lamplugh uttered that oft-quoted phrase more than eighty years ago, and it’s as valid today as it was back then. Like Newton’s Laws of Physics, it’s one of the basic, unchanging truths about flying: certain things simply must be done properly if we’re to avoid disaster in the air. One of the best examples would be dealing with a low-altitude engine failure.

Last week’s TransAsia ATR-72 accident is a potent reminder of this aphorism. While we don’t know the cause yet and probably won’t know the whole story for a year or more, it got me thinking about how oddly things are done in aviation sometimes. For example, airline pilots move “up” the food chain from turboprops to jets. If safety is the paramount concern, that’s backwards. Shouldn’t the most experienced pilots should be exercising their skills on the most challenging aircraft rather than the least?

While jets certainly have their pitfalls and perils, a low-altitude engine failure is generally more challenging in a turboprop. The dead engine’s propeller creates tremendous drag until it’s properly secured. Many multi-engine turboprops are equipped with mechanisms to automatically feather the offending prop, but if that system doesn’t function properly, has been deferred, or simply doesn’t exist, the pilot is faced with six levers in close proximity, only one of which will do the trick. It’s easy to pull the wrong one.

Worse yet, if the craft has an autofeather system, the pilot would logically expect it to function as advertised. He or she would have to first detect the lack of feathering, then run the identify-verify-feather drill. Unlike training scenarios, there’s a major surprise factor at play as well. In a simulator, is anyone really surprised when the engine quits? Of course not. In the real world, pilots make thousands of flights where a powerplant doesn’t fail. As much as you tell yourself with each takeoff that “this could be the one”, empirical evidence in the form of a pilot’s own experience suggests against it. That makes preparation for a low-altitude emergency a constant battle with oneself. Are we always honest about how we’re doing in that fight? Probably not.

When I flew ex-military U-21A turboprops for a government contractor, we did all our training in the actual aircraft. I’ll never forget how marginal the aircraft’s performance was, even when engine failures were handled properly and expediently. We would fly a single-engine approach into Catalina Airport, where the missed approach procedure takes you toward the center of the island and some fairly high terrain. On one training flight the autofeather system initially worked as advertised, but then started to slowly unfeather.

Turboprop flying also comes with increased risk exposure due to the flight profile. A jet pilot might fly one or two legs a day versus five, six, or seven flown by the guy in the turboprop. With more legs comes an increased statistical opportunity for that engine to quit on takeoff. Turboprops also fly at lower altitudes where they tend to be in weather rather than above it.

The reciprocating twin pilot has it even worse when it comes to performance. Most of them have no guarantee of any climb performance at all on one engine, especially with the gear down, and few are equipped with automatic feathering systems. Yet that’s where we all start out.

Contrast this with engine failure in the modern jet, where the pilot need do nothing but raise the landing gear and keep the nose straight. In my aircraft, at least, we don’t even add power on the remaining engine. Unless the plane is literally on fire, we just climb straight out for a minute or two, gaining altitude and doing… nothing. No checklist to run, and only two levers in the throttle quadrant rather than six.

John Deakin described the contrast between prop and jet quite colorfully when he transitioned into the G-IV:

“If you hear a Gulfstream pilot whine about poor performance when high, hot, and heavy, please understand, he’s whining about less than 1,000 feet per minute on one engine. I sometimes feel like slapping a chokehold on, and dragging one of these guys out to the old C-46, loaded, on a hot day, and make him do an engine failure on takeoff, where he’d be lucky to get 50 feet per minute.”

There are other places where you can see this same phenomenon at work in aviation. Consider the world of flight instruction. The least experienced CFIs typically start off by teaching primary students. Again, that’s backwards. It would seem more logical to start instructors off with checkouts and endorsements for experienced pilots or commercial certificate training. Putting the best, most experienced CFIs with the neophytes might help accelerate their progress and alleviate the high student pilot drop-out rate.

The Law of Primacy — something every CFI candidate learns about — tells us that “the state of being first, often creates a strong, almost unshakable, impression. Things learned first create a strong impression in the mind that is difficult to erase. For the instructor, this means that what is taught must be right the first time.” Primary flight training literally sets the foundation of an aviator’s flying life, to say nothing of the fact that teaching primary students is one of the most difficult jobs a CFI can undertake. So why is this critical task mainly entrusted to the newest, least experienced instructors?

The answer to these questions usually comes down to money. The almighty dollar frequently plays a powerful role in explaining the unexplainable in aviation. While it would be unrealistic to deny the importance of financial concerns in defying gravity, whole sections of the aviation ecosystem run backwards and one can’t help but wonder if perhaps safety suffers because of it.

Flying When the Big Game is On, with a Twist this Year

Friday, January 23rd, 2015

Super Bowl Sunday is but two weekends away, now, and with that in mind pilots planning to fly in the southwestern United States (and even a touch of northern Mexico) need to take note. A high profile TFR encompassing the bulk of the Phoenix, Arizona, area will be in effect the day of the Super Bowl. Plus, a special flight notice out of the Las Vegas, Nevada, area denotes that GPS testing (click here for the advisory) will occur before and after the big game.

The GPS outages could come anytime during the GPS testing, slated for January 23rd to February 15th, 2015.

Well, not anytime. Last week AOPA Vice President of Government Affairs Melissa Rudinger contacted the FAA, who contacted the Air Force, who have now agreed to suspend GPS testing the day before, day of, and day after the Super Bowl.

But why is the conjunction of these two events still something to watch for? Well, just read the gist of the flight advisory:

GPS (including WAAS, GBAS, and ADS-B) may not be available within a 522nm radius centered at:

The expanse of GPS testing going on in the southwestern US this winter is astounding.

The expanse of GPS testing going on in the southwestern US this winter is astounding.

371900N,1155023W 

FL400-unlimited decreasing in area with decrease in altitude defined as:

482nm radius at FL250,

449nm radius at 10000ft,

378nm radius at 4000ft AGL

365nm radius at 50ft AGL

The impact area also extends into the mexican FIR. Pilots are strongly encouraged to report anomalies during testing to the appropriate ARTCC to assist in the determination of the extent of GPS degradation during tests.

Yep, you are reading this right. There will be GPS outages at the same time that there will be a concentration of aircraft arriving and departing one of the southwest’s largest urban areas. Pilots operating to and from the Super Bowl, or just around the general Phoenix area need to take the time to review their ground-based navigation skills.

I question the commonsense of running GPS testing that could result in outages in the days leading up to an event such as the Super Bowl, but it looks like those arriving a few days early to enjoy Arizona’s sunshine, or lingering more than a day after the big event will have to deal with it.

So how should you prepare? You could brush up on your knowledge and usage of VOR based navigation, for one. Remember Victor airways? You’ll probably get cleared to an intersection or two. Might even have to hold! If you haven’t used the ground-based navigation devices in your aircraft for a while, or even shot a ground-based navigation non-precision approach, now is the time to practice.

And for those of you who operate VFR? Some of the best ground navigation devices out there are actually not attached to your airplane. I’m talking about your eyes and a good old fashioned sectional. Yes, pilotage. Even if you decide that you have too much invested in your iPad charting to ante up for a paper version you can use your app—you may have to pan your way across the chart manually, though.

The FAA recently updated the special security notam relating to sporting events (find it here). If you haven’t had time to look it over here is the short version: all aircraft operations, including parachute jumping, unmanned aircraft, and remote controlled aircraft, are prohibited within three nautical miles and under 3,000 feet of any stadium or racetrack having a seating capacity of 30,000 or more people. You can find a list of stadiums and speedways here. The standard TFR is in effect an hour before to an hour after each event.

For the upcoming Super Bowl at the University of Phoenix Stadium the notam for its special TFR is out. Within the 30 nautical mile TFR ring around the stadium there will be no flight training, practice instrument approaches, aerobatic flight, glider operations, parachute operations, ultralight, hang gliding, balloon operations, agriculture/crop dusting, animal population control flight operations, banner towing operations, sightseeing operations, model aircraft operations, model rocketry, seaplane/amphibious water operations, unmanned aircraft systems (UAS), and commercial cargo carrier operations unless they comply with their respective TSA approved security program. Within the TFR area: all aircraft must be on an active IFR or VFR flight plan with a discrete beacon code assigned by ATC; aircraft must be squawking the discrete code prior to departure or entering the TFR and at all times while in the TFR; aircraft are not authorized to overfly the inner core while attempting to exit the TFR; and two-way communications with ATC must be maintained at all times. Only approved law enforcement and military aircraft directly supporting the Super Bowl and approved air ambulance flights, all of which must be squawking an assigned discrete transponder code and on an approved airspace waiver are permitted within the 10 nautical mile inner core of the TFR.

Please check the current notam for updates.

Intercept proceduresBe ready with a good rendering of the TFR and the ability to navigate around it or receive a squawk code and stay in communication with ATC when you are anywhere near it. And if you are intercepted by U.S. military or law enforcement aircraft, remain predictable. Do not adjust your altitude, heading, or airspeed until directed to by the intercepting aircraft. Attempt to establish radio communications with the intercepting aircraft or with the appropriate ATC facility by making a general call on guard (121.5 MHz), giving your identity, position, and nature of the flight. If transponder equipped, squawk 7700 unless otherwise instructed by ATC. Comply with interceptor aircraft signals and instructions until you’ve been positively released. For more information, read section 5-6-2 in the Aeronautical Information Manual (AIM). Fly safe out there!

Upset Recovery Training vs. Aerobatics

Tuesday, October 28th, 2014

Upset recovery training has been all the rage over the past couple of years. A Google search of that exact phrase returns more than 24,000 results. There’s a professional association dedicated to such training. ICAO even declared aircraft upsets to be the cause of “more fatalities in scheduled commercial operations than any other category of accidents over the last ten years.”

Nevertheless, I get the impression that some folks wonder if it isn’t more of a safety fad than an intrinsic imperative. It’s hard to blame them. You can hardly open a magazine or aviation newsletter these days without seeing slick advertisements for this stuff. When I was at recurrent training a couple of months ago, CAE was offering upset recovery training to corporate jet pilots there in Dallas. “If I wanted to fly aerobatics, I’d fly aerobatics!” one aviator groused.

He didn’t ask my opinion, but if he had, I’d remind him that 99% of pilots spend 99% of their time in straight and level flight — especially when the aircraft in question is a business jet. I’m not exaggerating much when I say that even your typical Skyhawk pilot is a virtual aerobat compared to the kind of flying we do on charter and corporate trips. For one thing, passengers pay the bills and they want the smoothest, most uneventful flight possible.

In addition, these jets fly at very high altitudes – typically in the mid-40s and even as high as 51,000 feet. Bank and pitch attitudes tend to stay within a narrow band. Yaw? There shouldn’t be any. The ball stays centered, period. We aim for a level of smoothness that exceeds even that of the airlines. Passengers and catering may move about the cabin frequently during a flight, but it shouldn’t be because of anything we’re doing up front.

Fly like that for a decade or two, logging thousands and thousands of uneventful, straight-and-level hours and the thought of all-attitude flying can become – to put it mildly – uncomfortable. I’ve even seen former fighter pilots become squeamish at the thought of high bank or pitch angles after twenty years of bizjet flying.

Unfortunately, there are a wide variety of things that can land a pilot in a thoroughly dangerous attitude: wind shear, wake turbulence, autopilot failure, mechanical malfunction (hydraulic hard-overs, asymmetric spoiler or flap deployment, etc.), inattention, and last but not least, plain old pilot error. Look at recent high-profile accidents and you’ll see some surprisingly basic flying blunders from the crew. Air France 447, Colgan 3407, and Asiana 214 are just three such examples. It may not happen often, but when it does it can bite hard.

So yes, I think there is a strong need for more manual flying exposure in general, and upset recovery training in particular. This isn’t specific to jet aircraft, because some light aircraft have surpassed their turbine-powered cousins in the avionics department. I only wish the 1980’s era FMS computer in my Gulfstream was as speedy as a modern G1000 installation.

Defining the Problem

To the best of my knowledge, neither the NTSB or FAA provide a standard definition for “upset”, but much like Supreme Court Justice Potter Stewart, we pretty much know it when we see it. The term has generally come to be defined as a flight path or aircraft attitude deviating significantly from that which was intended by the pilot. Upsets have led to loss of control, aircraft damage or destruction, and more than a few fatalities.

As automation proliferates, pilots receive less hands-on experience and a gradual but significant reduction in stick-and-rudder skill begins to occur. The change is a subtle one, and that’s part of what makes it so hazardous. A recent report by the FAA PARC rulemaking workgroup cites poor stick and rudder skills as the number two risk factor facing pilots today. The simple fact is that windshear, wake turbulence, and automation failures happen.

The purpose of upset recovery training is to give pilots the tools and experience necessary to recognize and prevent impending loss of control situations. As the saying goes, an ounce of prevention is worth a pound of cure, and that’s why teaching recovery strategies from the most common upset scenarios is actually a secondary (though important) goal.

What about simulators? They’ve proven to be an excellent tool in pilot training, but even the most high fidelity Level D sims fall short when it comes to deep stalls and loss of control scenarios. For one thing, stall recovery is typically initiated at the first indication of stall, so the techniques taught in the simulator may not apply to a full aerodynamic stall. Due to the incredibly complex and unpredictable nature of post-stall aerodynamics, simulators aren’t usually programmed to accurately emulate an aircraft in a deeply stalled condition. Thus the need for in-aircraft experience to supplement simulator training.

Upset Recovery vs. Aerobatics

It’s important to note that upset recovery training may involve aerobatic maneuvering, but it does not exist to teach aerobatics. Periodically over the years, discussions on the merits of this training will cause a co-worker to broach the subject of flying an aerobatic maneuver in an airplane which is not designed and built for that purpose. This happened just the other day. Typically they’ll ask me if, as an aerobatic pilot, I would ever consider performing a barrel or aileron roll in the aircraft.

I used to just give them the short answer: “no”. But over time I’ve started explaining why I think it’s such a bad idea, even for those of us who are trained to fly such maneuvers. I won’t touch on the regulations, because I think we are all familiar with those. I’m just talking about practical considerations.

Normal planes tend to have non-symmetrical airfoils which were not designed to fly aerobatics. They feature slower roll rates, lower structural integrity under high G loads, and considerably less control authority. You might have noticed that the control surfaces on aerobatic airplanes are pretty large — they are designed that way because they’re needed to get safely into and out of aerobatic maneuvers.

That’s not to say an airplane with small control surfaces like a business jet or light GA single cannot perform aerobatics without disaster striking. Clay Lacy flies an airshow sequence in his Learjet. Duane Cole flew a Bonanza. Bob Hoover used a Shrike Commander. Sean Tucker flew an acro sequence in a Columbia (now known as the Cessna TTx). However, the margins are lower, the aerobatics are far more difficult, and pilots not experienced and prepared enough for those things are much more likely to end up hurt or dead.

Sean Tucker will tell you that the Columbia may not recover from spins of more than one or two turns. Duane Cole said the Bonanza (in which he did inverted ribbon cuts) had barely enough elevator authority for the maneuver, and it required incredible strength to hold the nose up far enough for inverted level flight. Bob Hoover tailored his performance to maneuvers the Shrike could do — he’ll tell you he avoided some aerobatic maneuvers because of the airplane’s limitations.

Knowing those limitations and how to deal with them — that’s where being an experienced professional aerobatic pilot makes the difference. And I’m sure none of those guys took flying those GA airplanes upside down lightly. A lot of planning, consideration, training and practice went into their performances.

Now, consider the aircraft condition. Any negative Gs and stuff will be flying around the cabin. Dirt from the carpet. Manuals. Items from the cargo area. Floor mats. Passengers. EFBs. Drinks. Anything in the armrest or sidewall pockets. That could be a little distracting. Items could get lodged behind the rudder pedals, hit you in the head, or worse.

If the belts aren’t tight enough, your posterior will quickly separate from the seat it’s normally attached to. And I assure you, your belts are not tight enough. Getting them that way involves cinching the lap belt down until it literally hurts. How many people fly a standard or transport category aircraft that way?

Now consider that the engine is not set up for fuel and oil flow under negative Gs. Even in airplanes specifically designed for acro, the G loads move the entire engine on the engine mount. In the Decathlon you can always see the spinner move up an inch or two when pushing a few negative Gs. Who knows what that would do with the tighter clearances between the fan and engine cowl on an airplane like the Gulfstream?

Next, let’s consider trim. The jet flies around with an electric trim system which doesn’t move all that quickly. The aircraft are typically trimmed for upright flight. That trim setting works heavily against you when inverted, and might easily reach the point where even full control deflection wouldn’t be sufficient.

I could go on, but suffice it to say that the more I learn about aerobatics, the less I would want to do them in a non-aerobatic aircraft – and certainly not a swept wing jet! Sure, if performed perfectly, you might be just fine. But any unusual attitude is going to be far more difficult — if not outright impossible — to recover from.

Dang it, Tex!

Every time someone references Tex Johnson’s famous barrel roll in the Boeing 707 prototype, I can’t help but wish he hadn’t done that. Yes, it helped sell an airplane the company had staked it’s entire future on, but aerobatic instructors have been paying the price ever since.

Aerobatic and upset recovery training: good. Experimenting with normal category airplanes: bad. Very bad.

Combat confusion in the cockpit

Monday, September 15th, 2014

Flight instructors know this: the cockpit of an aircraft in flight is a horrible classroom. Conditions are changing by the milisecond, and through it all you are moving, most of the time in three dimensions. With so much to pay attention to, student pilots are easily befuddled, leaving them paralyzed, and unable to decide what to do next. It takes a lot of training to prevent that kind of paralysis in human pilots. Why?

Confusion is easy to create. Lion tamer Clyde Beatty lived to a ripe old age by simply bringing a perfectly symetrical four legged chair into the ring with him when he met his big cats. When he held a chair in front of the lion’s face, the lion tried to focus on all four legs of the chair at the same time. With its focus divided, the lion became confused and was unsure about what to do next. When faced with so many options, the lion’s basal instinct was to freeze and wait, instead of attacking.

confusionHumans, being mammals, have brains that work the same way when innundated with conflicting information. Imagine how that plays out in the clouds when your panel lights up with a caution light, or a series of cascading failures. How about when that beautiful Garmin 1000 multifunction screen goes blank? Ach! Can you cope quickly to save the flight?

You can if you’ve got a mind practiced in focusing. The key word here is practice.

Researchers have pinned down four different types of concentration: Broad-external attention is good for assessing the total environment. When used inappropriately, it can lead you to miss things because you’re being distracted or paying attention to something that’s irrelevant. Broad-internal attention is good for developing a game plan or strategy. When used inappropriately, it can lead you to think too much, causing “paralysis by analysis.” Narrow-external attention is good for focusing on a single, primary target and blocking out distractions. When used inappropriately, it can lead you to be so focused on one thing that you miss something else that’s important. Finally, there is narrow-internal attention, which is good for focusing your thoughts on several mental skills, such as body awareness, energy management, or imagery. When used inappropriately it can, however, cause you to “choke.”

Harnessing these four types of concentration, and tapping into the one you want in the moment is an art both studied and practiced extensively by elite atheletes, and we can learn from them. To practice concentration it is best to start in a quiet place, then work your way into practicing where there are lots of distractions (best for learning how to tune them out, and discovering when to tune them in, too).

Start by working in a flight simulator (a pc sim is fine). Fly an approach to land as slowly as you can, all the while paying attention to all the details in the movements you make handling the controls, setting the instruments and running the checklist. Do it again closing your eyes at points during the approach and note how your body feels. Pay attention to all the physical sensations throughout your body.

Next, step away from the sim and go for the Grid exercise. Take a 10” X 10” block grid on a piece of paper and randomly placed the numbers 00 through 99 in each block. While timing one minute, find and put a slash through as many numbers as possible, in sequence, starting with 00. Start at different numbers, do only odd or even numbers, or go backwards from 99 to 00 to mix things up. After you get better at this, go back to practicing in the sim with distractions such as loud noises or distracting spouse in the room.

Finally, learn to shift your attention. This is a little bit like taking the camera lense and focusing in the foreground or the background. You want to do this with both your eyes and your ears. It can be practiced in the flight sim, or at your local coffee shop on a busy morning. Concentrate on what you hear. Identify each sound in the room separately and label it. Next, broaden your focus and simultaneously listen to all the sounds together without labeling them. Then concentrate on your body. Pay attention to your bodily sensations, such as the way you feel against the chair. Label each sensation as you notice it. Next, try to experience all the physical sensations together without labeling any particular one. Lastly, concentrate on your mind. Pay attention to your thoughts and feelings. Let each thought and feeling appear by itself. Next try to empty your mind, let go of your thoughts and feelings, and relax.

Now, take the attention-shift exercise into the flight sim with you and alternate your focus between each instrument in the virtual panel in front of you. Then shift your attention to whole systems (radios, EFIS, engine, hydraulic, pressurization or oxygen). Finally pull back and absorb the complete picture, including your situational awareness of where the aircraft is in its virtual space.

It works. You’ll notice subtle differences that could be the beginning of a big problem much more rapidly, and, if you’ve studied up, you can correct a myriad of problems in-flight, or get your machine safely on the ground before a little fault becomes a game-ender.

Judgment, and the Day

Monday, August 18th, 2014

It was windy yesterday—blowing hard out of the south and gusting to near 40 knots, according to the anemometer mounted on the top of the FBO building that sits midfield at our little airport tucked into the Mad River Valley, near Warren, Vermont. Weather was inbound. But for the day conditions were still high overcast, with just a few scattered, scraggly cumulous. Nothing towering. Maybe some wave action from the wind flowing over the undulating Green Mountains and White Mountains to the south and east.

Sometimes it is better to be on the ground than in the air.

Sometimes it is better to be on the ground than in the air.

Definitely some turbulence.

All that, and I wanted to fly. No, seriously, I was aching to fly. Just two days before I’d had the opportunity to get back into a Schleicher ASK-21 two-place fiberglass sailplane. A sexy ship if there ever was one, with an excellent 40:1 glide ratio and plenty of capability (even for aerobatics, if you are skilled in that realm).

Sunday’s flight with Rick Hanson (who has been with Sugarbush Soaring so long no one I know can remember the place without him and his wife, Ginny) was all about re-familiarization. I’d flown a ship just like her the year before, in Minden, Nevada. Vermont’s conditions, on that Sunday, at least, were tame compared to the way I’d gotten my butt kicked by rising thermals and developing dust devils in the high Nevada desert. This year staying behind the tow plane, even boxing its wake was just an exercise, not a wrestling match.

Thermaling came back to me pretty quickly, too. Last year the thermals were leaning towers, tilting with the afternoon valley winds. This year, though they moved with the prevailing flow, they seemed a little wider. Finding that ball of rising air in the middle seemed easier, more intuitive. Maybe it is just that I’ve only let a year go by. Before Minden I’d had a two year hiatus from soaring. It could be that two years is just too long, leaving me just too rusty and out of practice.

In any case, by Monday’s flight I was feeling competent. My instructors that day were John and Jen, and they were a dream to fly with (as they all have been, really). It was an excellent day for soaring, with light winds and towering cumulous streets of clouds that did not over develop. One expert soaring pilot riding a capable steed made his way to Stowe, Vermont, and back. And yes, someone else called (actually he had his wife call for him, hmmm…) to ask for an aero-retrieve from 40 miles east. The good news was that he’d landed at an airport.

Landing out. That’s soaring-speak for not making it back to your point of origin. An aero-retrieve means you pay the tow plane to fly to you, and then give you a tow home. Some pilots combat this problem by flying a motor glider, firing up the engine when they get to the point where they are too low to return to their home base, perhaps because they misjudged the lift conditions, or how long the lift would hold out at the end of the day. Other pilots use better judgment to make sure they get back to home base every time.

My instructors on Monday spent plenty of time helping me “see” all of the possible acceptable off-airport landing sites in the valley, and just beyond. We were high enough to see the Adirondacks looming over Lake Champlain, and hear the Québécois’ French chatter in Canada, which I could see clearly to the north with every circle as I climbed to cloud base, rolled out, pushed over for speed, and commenced to glide to the next decent thermal.

We crossed the valley practicing wing-overs, crazy-eights, stalls and steep turns, until they felt I knew all the possible quirks of the fine machine I’d chosen to master. Landings required another skill—understanding that I was much closer to the ground at flare than in my usual ride, the RV-10. That took a bit of coaching, too, but ultimately I got the visual picture and our touchdowns were smooth and on the mark. The thing about sailplanes: though you can control your trajectory to landing nicely with dive brakes, you don’t get to go around if you come up short or long. Making it back to home base from altitude is all about calculating your inertia, choosing your descent speed, setting your trajectory with your dive brakes, and making your initial pattern entry point, downwind, base, final and landing spots on speed and on altitude. Add airport traffic into the mix and you’ve got a great scenario for teaching any pilot great judgment skills.

By day’s end on Monday I’d thermaled, reviewed primary skills, proven my pattern, landing, and even emergency landing prowess, and received my sign-off for solo in the ASK-21. Tuesday’s conditions, however, were nowhere near what I’d proved myself in, and I knew it. The sailplane sat ready for me at the end of the runway, and the tow plane pilot, Steve, eyed me, waiting to know what I wanted to do. The wind was whistling through the gaps in the window frame of the not-ready-for-winter FBO. Sure, I’d flown in some gnarly winds in Minden. But not solo. In fact the last time I’d soloed a glider was in benign conditions over flat land.

“Um…no. I’m not going up today,” I said definitively.

Steve smiled. Good call.

That afternoon I hiked up a cliffside to sit on a sheltered hunk of granite that provided me a view of  half the Champlain Valley. It wasn’t quite as splendid as my perch in the sailplane, but it did sooth. The clouds streamed by, harbingers of the rain that would follow. I was happy to be on terra firma, and ready to fly another day.

The Ab Initio Flaw

Wednesday, August 6th, 2014

Ecclesiastes tells us there’s nothing new under the sun. Where the pilot shortage debate is concerned, that’s definitely true. More than one industry veteran has wryly noted the “impending pilot shortages” of every decade since the Second World War. And considering the number of pilots trained during that conflict, you could say the shortage history goes back a lot further. How about to the very dawn of powered flight? I mean, Wilbur and Orville could have saved themselves tremendous time and money if only they’d had an experienced instructor to guide them!

Every “pilot shortage” article, blog post, and discussion I’ve seen centers around short-term hiring trends and possible improvements in salary and benefits for aviators. Nobody asked my opinion, but for what it’s worth, it seems both clear and logical that the regional airlines are hurting for pilots. The pay and working conditions at those companies are horrific. Major airlines, on the other hand, will probably never have trouble attracting people. I don’t know if that qualifies as a pilot shortage. I tend to think it does not. It’s more of a shortage of people who are willing to participate like lab rats in a Part 121 industry cost-cutting experiment.

What the pilot shortage mishegas really has me thinking about is the long-term possibility of ab initio schemes migrating to the United States and what a profoundly bad thing that would be for aviation at every level.

Who knew that JAL operates a huge fleet of Bonanzas?  For decades they operated an ab initio program out of Napa, California

Who knew that JAL operates a huge fleet of Bonanzas? For decades they operated an ab initio program out of Napa, California

According to Wikipedia, “ab initio is a Latin term meaning ‘from the beginning’ and is derived from the Latin ab (‘from’) + initio, ablative singular of initium (‘beginning’)”. In aviation, it refers to a method of training pilots. In fact, it’s the de facto technique in use for the majority of airlines around the world. Essentially, foreign airlines will hire people off the street who have no flight time or experience. They are shepherded through the various ratings and certificates necessary to fly an Boeing or Airbus while on the airline’s payroll.

This might sound like a brilliant idea — and to an airline, it probably is. Imagine, no bad habits or “we did it this way at my last job” issues, just well-trained worker bees who have been indoctrinated from day one as multi-pilot airline crew members.

I don’t know if the airlines love ab initio or not. What I do know is that non-U.S. airlines use it because there’s no other choice. The fertile, Mesopotamian breeding ground of flying experience we call general aviation simply does not exist in those countries. Without GA’s infrastructure, there are no light aircraft, flight schools, mechanics, or small airports where aspiring pilots can learn to fly. Those who do manage to get such experience more often than not get it here in the United States.

To put it another way, the “pilot shortage” has been going on in foreign countries since the dawn of aviation, and ab initio is the way they’ve solved the problem in most places.

So what’s my beef with this method of training? To put it simply, in an era of atrophying pilot skills, ab initio is going to make a bad problem worse. While it’s a proven way of ensuring a steady supply of labor, ab initio also produces a relatively narrow pilot who is trained from day one to do a single thing: fly an airliner. These airline programs don’t expose trainees to high Gs, aerobatics, gliders, sea planes, banner towing, tailwheels, instructing, or any of the other stuff that helps create a well-rounded aviator.

If airlines in the U.S. adopt the ab initio system, the pilots they hire will only experience things that are a) legally required, and b) directly applicable to flying a modern, automated airliner. Nothing else. After all, an airline will only invest what’s necessary to do the job. It’s a business decision. And in an era of cutthroat competition and razor thin profit margins, who could blame them?

The problem is, all those crap jobs young fliers complain about (and veterans seem to look back on with a degree of fondness) are vital seasoning for a pilot. He or she is learning to make command decisions, interact with employers and customers, and generally figure out the art of flying. It’s developing that spidey sense, taking a few hard knocks in the industry, and learning to distinguish between safe and legal.

These years don’t pay well where one’s bank account is concerned, but they are create a different type of wealth, one that’s often invisible and can prove vital when equipment stops working, weather is worse than forecast, or the holes in your Swiss cheese model start to line up.

Thus far, airline ab initio programs haven’t been a major part of the landscape here in the U.S. because our aviation sector is fairly robust. We are blessed with flying jobs which build the experience, skill, and time necessary for larger, more complex aircraft. But it’s easy to see why it might become an attractive option for airlines. For one thing, that darn pilot shortage. The cost of flying has risen dramatically over the past decade while the benefits (read: money) remain too low for too long. Airlines can cure the shortage by training pilots from zero hours… but at what cost?

Coming up through the ranks used to mean you were almost certain to be exposed to some of those elements. That’s why I believe ab initio would be just one more nail in the coffin of U.S. aviation, one more brick in the road of turning us into Europe. While I like visiting The Continent, I do not envy the size or scope of their aviation sector and sincerely hope we don’t go down that path.

Addendum

Apparently I’m not the only one with ab initio on my mind. The day before the deadline for this post, AVweb reported on a major announcement from Boeing:

Now, with its subsidiary company Jeppesen, [Boeing] will undertake ab initio airline pilot training to provide a supply of pilots with an “Airline Transport Pilot License” (certificate in the U.S.) and a Boeing type rating who “will be ready to move into the first officer’s seat,” according to Sherry Carbary, vice president of flight services.

Boeing’s ab initio training program is divided into two parts. The first, run by Jeppesen, will take an applicant—referred to as a cadet—who must hold a first-class medical at the time of application, and put her or him through a screening process. Those who pass will go through 12-18 months of flight training, resulting in, according to David Wright, director of general aviation training, an Airline Transport Pilot License. The second phase involves the cadet going to a Boeing facility for another two months of training where she or he gets a first exposure to a full-motion jet simulator, and that will result in a type rating in a Boeing jet. Wright said that cadets will come out of the $100,000-$150,000 program with 200-250 hours of flying time and will be ready to go into the right seat of an airliner.

Boeing jets are operated by major airlines, not regionals. An American pilot would typically sport several thousand of hours of flight experience before being hired there. Now Boeing is proposing to put 200 hour pilots into their airplanes on a worldwide basis. That won’t fly (yet) in the U.S., where 1,500 hours is currently required for an Airline Transport Pilot certificate. But I believe the ab inito trend bodes ill for airlines and general aviation alike.

We Don’t Train For That

Monday, July 7th, 2014

The tragic Gulfstream IV accident in Boston has been on my mind lately, partly because I fly that aircraft, but also because the facts of the case are disquieting.

While I’m not interested in speculating about the cause, I don’t mind discussing factual information that the NTSB has already released to the public. And one of the initial details they provided was that the airplane reached takeoff speed but the pilot flying was not able to raise the nose (or “rotate,” in jet parlance).

My first thought after hearing this? “We don’t train for that.” Every scenario covered during initial and recurrent training—whether in the simulator or the classroom—is based on one of two sequences: a malfunction prior to V1, in which case we stop, or a malfunction after V1, in which case we continue the takeoff and deal with the problem in the air. As far as I know, every multi-engine jet is operated the same way.

But nowhere is there any discussion or training on what to do if you reach the takeoff decision speed (V1), elect to continue, reach Vr, and are then unable to make the airplane fly. You’re forced into doing something that years of training has taught you to never do: blow past V1, Vr, V2, and then attempt an abort.

In this case, the airplane reached 165 knots—about 45 knots beyond the takeoff/abort decision speed. To call that uncharted territory would be generous. Meanwhile, thirty tons of metal and fuel is hurtling down the runway at nearly a football field per second.

We just don’t train for it. But maybe we should. Perhaps instead of focusing on simple engine failures we ought to look at the things that are causing accidents and add them to a database of training scenarios which can be enacted in the simulator without prior notice. Of course, this would have to be a no-jeopardy situation for the pilots. This wouldn’t be a test, it would be a learning experience based on real-world situations encountered by pilots flying actual airplanes. In some cases there’s no good solution, but even then I believe there are valuable things to be learned.

In the case of the Gulfstream IV, there have been four fatal accidents since the aircraft went into service more than a quarter of a century ago. As many news publications have noted, that’s not a bad record. But all four have something in common: each occurred on the ground.

  • October 30, 1996: a Gulfstream IV crashed during takeoff after the pilots lose control during a gusting crosswind.
  • February 12, 2012: a Gulfstream IV overran the 2,000 meter long runway at Bukavu-Kamenbe
  • July 13, 2012: a G-IV on a repositioning flight in southern France departs the runway during landing and broke apart after hitting a stand of trees.
  • May 31, 2014: the Gulfstream accident in Boston

In the few years that I’ve been flying this outstanding aircraft, I’ve seen a variety of odd things happen, from preflight brake system anomalies to flaps that wouldn’t deploy when the airplane was cold-soaked to a “main entry door” annunciation at 45,000 feet (believe me, that gets your attention!).

This isn’t to say the G-IV is an unsafe airplane. Far from it. But like most aircraft, it’s a highly complex piece of machinery with tens of thousands of individual parts. All sorts of tribal knowledge comes from instructors and line pilots during recurrent training. With each anomaly related to us in class, I always end up thinking to myself “we should run that scenario in the simulator.”

Cases like United 232, Apollo 13, Air France 447, and US Air 1549 prove time and time again that not every failure is covered by training or checklists. Corporate/charter aviation is already pretty safe… but perhaps we can do even better.

Prepping the long X-C

Monday, June 23rd, 2014

It is now one month before my annual summer airborne trek and, yes, preparation has already begun. In fact, my task list for these long summer outings starts a few months ahead, if you want to include the time I spend reserving hotel or condo space and cars in the most popular places (I use AOPA’s web discounts to help make it all affordable). That’s just good planning.

I double check all the paperwork for the year is good with my airplane. It generally goes through its condition check—the equivalent of an annual inspection—in April, and by late May any sore points have have been completely worked out by my A&P. In June it is time to ensure that all of my GPS and MFD databases will stay up to date throughout my journey.

It’s also when I start a push on my own pilot currency, to make sure that I’m ready for any of the weather my long cross country is liable to toss at me.  I never want to feel as if my skills aren’t up to the conditions. I hit the PC sim in my office to practice my procedures. Then I rustle up my flight instructor and torture him with a couple sessions of practice approaches, navigation, holding patterns and emergencies.

The emergencies are something I always have in the back of my mind. By the end of June, once I know

Emergency kits come in all shapes and sizes. Alternatively, you can build your own.

my general routing for the summer trip, I start gathering fresh supplies for my emergency back pack, which sits just behind the pilot’s seat (not in the baggage compartment where I can’t reach it without getting out of my seat). The back pack holds packaged water, a mylar blanket and first aid supplies for dealing with cuts, scrapes and “bleeders.” It also has a strobe light, signal mirror, emergency cryovac food and a multipurpose tool. We’ve got a tiny two-person tent that barely weighs five pounds packed, and if we’re going over a lot of wide-open space that’s worth tucking in next to my husband’s emergency tool kit, too.

That tool kit has come in handy more times than not. These adventures put more hours on our airplane than it often flies in the three months after we return. And hours mean wear and tear. We have, on occasion, even been seen to carry a spare part or two in our cargo area. Overcautious? Depends on where you are going. Do you know how much it costs to replace an alternator on Grand Cayman, or Roatan?

Once I’ve got my emergency back pack, tool kit and any spare parts together I can begin thinking about

AOPA's airport information web application can help you pick a fuel stop.

AOPA’s airport information web application can help you pick a fuel stop.

the routing. I know how far my airplane can safely go in one leg, and I know how long I can safely go, say, before I have to “go.” In early July I begin checking flight planning software and comparing possible fuel stops. Because I don’t know what the weather will be on my day of departure, and because fuel prices fluctuate, I always have two or three potential airports planned for each fuel stop. I’ll narrow it down the night before I leave, and even still, I might not make a final choice until I’m airborne and I see what the real flight conditions are like.

It sounds like a lot of work, getting ready for an epic trip. It can be, if you look at it as work. I see all the prep as part of the build-up, the anticipation that is half the fun of going. With that attitude, starting flight preparations early is all part of the fun.

Statistically speaking

Tuesday, June 17th, 2014

Baseball fans are the most statistically driven people I know. A serious fan can tell you almost anything about the game, the team, or the players on the field using known metrics that compare one to the other with accuracy and in context. For example:

  • Stan Musial had 1,815 hits on the road and 1,815 hits at home. Apparently symmetry mattered to Stan the Man.
  • In 1985 John Tudor threw 10 shutouts in one season.
  • Bob Feller the Cleveland Indians legendary pitcher made his first big league appearance at the ripe old age of 17. He won.
  • The longest winning streak in Major League history belongs to the New York Giants with 26 consecutive victories – in 1916!
  • Joe’s little brother Dom DiMaggio was no slouch. He once had a 34 game long hitting streak.

Imagine if aviation compared stats like that. Well, some of us do. Shawn Pratt of the Safety in Motion Flight Center in Puyallup, Washington, does anyway. And what he knows about statistics is worth knowing.

As a student pilot it became obvious to me that students who flew more often were more proficient and learned more quickly than students who flew less frequently. But it never occurred to me to measure exactly how much more quickly those students finished. Shawn did the math, and what he found is amazing.

Basically, he discovered that flight students are remarkably consistent. If they fly more often they learn quicker. If they fly less often, they learn slower. That much we knew. But Shawn crunched numbers, he used statistics to measure how long it took for flight students to achieve their goals based on how often they flew. What he found was that students are far less unique in their progress than we might think. It really does come down to the frequency of their lessons. Within a very modest margin for error it’s possible to accurately predict how long it will take a student to complete their training and earn their pilot certificate based solely on how often they fly.

Imagine that. Actual stats, measurable stats that can be put to good use by flight schools, CFIs, and students alike.

Here’s the crux of what Shawn learned. There is essentially a multiplier that can be applied to the mandatory minimum number of hours required to earn a certificate or rating, and that multiplier becomes larger as the frequency of flight lessons diminishes.

Put more simply, if you fly five times a week your multiplier is something like 1.2, which means you can expect to finish your Private Pilot training in roughy 48 hours. That’s 1.2 multiplied by the required minimum of 40 hours. 1.2 X 40 = 48.

With reliable, tested information like that at your fingertips you can accurately judge how much time it will take to meet your goal of earning a private pilot certificate. At five lessons a week the entire training process boils down to just a few weeks. You don’t have to plan for months of interuptions to your schedule. You just have to hack 30 days or fewer out of your schedule and commit to them.

You can also calculate the cost of that training more accurately. With a given rate per hour and a known number of hours, it becomes fairly easy to estimate the real cost of your flight training.

Now this is where it gets interesting. If you fly less often you can see what that does to your overall training time and cost. If you participate in lessons on four days each week, the multiplier grows somewhat. But if you only fly twice a week your training time and costs more than double. Double! That’s more than twice the time, more than twice the money, way more than twice the frustration, and a much higher likelihood that you’ll quit before you reach your goal.

Yep, stats work. They give validity to our gut feelings and either prove or disprove our theories about what it takes to become a good, safe, proficient pilot while staying within the budget we’ve given ourselves to reach that goal.