Archive for the ‘Training’ Category

Encouraging People to Replace Us

Wednesday, November 25th, 2015

Finding young people to grab the reins from us old guys in aviation is a bit like the weather … everyone talks about why we need to do something, but not everyone is clear about how to actually make that happen. Certainly doing nothing is the wrong answer. So what can we do to increase our odds of connecting all the right people together?

NBAA 2015 yoproAt the recent NBAA convention, the association offered a number of us an opportunity to mingle with a hundred or so officially named Young Professionals who’d volunteered to listen to us more-experienced (secret code for older) industry folks detail how we started while also delivering a bit of unsolicited advice for job seekers.

The NBAA team was spearheaded by the association’s Sierra Grimes with Brett Ryden from Southcomm’s Aviation leading a group of his editors who together created an hour’s worth of practical education at the show’s Innovation Zone. The panel was evenly split between ladies and gents … myself, Jo Damato from NBAA, Sarah Barnes from Paragon Aviation and Textron Aviation’s senior VP of Customer Service Brad Thress. Our moderator was writer Lowen Baumgarten.

Stage members spent a few minutes detailing their experiences, but since we were there to answer questions, I was antsy to interact with the audience. Over the course of the hour there were perhaps seven or eight good ones, but I wanted more. I probably shouldn’t have.

Reality kicked in for me about 20 minutes after we began as I realized that some of what a number of young people had told me the night before was really true … networking is not an innate skill, not even close. I’d seen this kind of thing before too. Universities apparently assume graduates automatically absorb networking skills out of thin air I guess. (more…)

Why I fly high

Monday, November 23rd, 2015

I take a lot of long trips in my Cessna T310R, and more than half of them involve cruising up in the high teens and low Flight Levels, simply because those are the altitudes at which my airplane is happiest, fastest, and most efficient. But from what I’ve been able to tell, the great majority of piston pilots shy away from using the high-altitude capabilities of their airplanes. Most pilots of normally aspirated airplanes seem to confine most of their flying to altitudes of 10,000’ and below, and even many pilots of unpressurized turbocharged airplanes like mine have never flown in the Flight Levels. It’s even surprising how many pilots of pressurized birds seem averse to flying much above the low teens.

That’s a shame, because it’s at the high end of the altitude spectrum that most of our airplanes achieve their best efficiency—and in many cases, their best speed as well. I’m not just talking about turbocharged airplanes. Most normally-aspirated birds are perfectly capable of cruise altitudes well into the teens.

Look at a plain-vanilla, fixed-gear, normally-aspirated Cessna Skylane:

Cessna 182Q Range Profile

Cessna 182Q Skylane range profile page from POH.

At a low altitude like 4,000’, maximum cruise speed is 139 KTAS at 75% power. Continue climbing until the airplane “runs out of throttle” at 8,000’ and max cruise climbs to 144 KTAS. That extra 5 knots will save you 9 minutes on an 800 NM trip when you take the extra climb into account. (5:38 instead of 5:47, no big deal).

Continue climbing to 12,000’ and max cruise drops back to 139 KTAS (same as at 4,000’), but at a much more fuel-efficient 64% power (which is all you can get at that altitude with wide-open throttle). The same 800 NM trip will take 6 more minutes at 12,000’ than at 4,000’ (5:53 to be exact) because of the longer climb, but burn a whopping 12 gallons less fuel in the process—if avgas costs $5/gallon, that’s $60—and increase IFR range by a full hour and 130 NM!

How far can we take this? Don a cannula and climb to 16,000’—high enough to fly right over the Front Range of the Rocky Mountains IFR—and max cruise drops to a still-respectable 130 KTAS at a miserly 53% power. Because it takes a Skylane nearly 40 minutes to climb from sea level to 16,000’ at max gross, the 800 NM trip will take a half-hour longer than at 12,000’ (6:23), but will save 20 gallons ($100?) and increase IFR range by a full two hours compared to our 4,000’ benchmark.


To fly an
800 NM Trip

4,000 139 K 820 NM 5:47 78 gal
8,000 144 K 840 NM 5:38 79 gal
12,000 139 K 950 NM 5:53 67 gal
16,000 130 K 1,040 NM 6:23 59 gal

Normally-aspirated, fixed-gear 182Q
(maximum gross weight, standard day, no wind,
88 gallons, 45 min reserve)

Unless you just happen to like low-and-slow, there’s no logical reason to cruise a Skylane lower than 8,000’ because doing so makes all the numbers worse: cruise speed, trip time, and range.  On the other hand, climbing to 10,000’ or 12,000’ will cost you a negligible amount of time, and reward you with substantially lower fuel burn and increased range.

These calculations are all based on zero-wind, but in real life the winds aloft are often a decisive factor in determining the best altitude to choose. If you’re headed eastbound, odds are you’ll have a tailwind—and the higher you fly, the better it’ll be.

In wintertime, climbing up high to catch favorable winds can pay off spectacularly. In the low-to-mid teens, 50 knot tailwinds are commonplace and a 70 or 80 knot tailwind is possible. Even in summer, when winds tend to be relatively light, going high can pay off. Here are some typical summer winds I pulled off of DUATS:

      6000    9000   12000   18000
 STL 2410+18 2809+12 3110+07 2917-04
 SPI 2510+18 3010+12 3211+07 2919-05
 JOT 2511+17 3012+12 3116+06 2926-07
 EVV 2509+17 3012+11 3216+07 3018-05
 IND 2411+16 3011+11 3114+07 2922-06
 FWA 2312+15 2812+10 2916+06 2926-07
 CVG 2210+15 2809+11 3012+07 3021-05
 CMH 2210+14 2710+10 2914+06 3026-07
 CRW 2108+15 2509+10 2908+06 3225-05
 AGC 2010+12 2510+09 2813+05 2930-09
 EKN 1907+13 2608+09 2810+06 3028-07
 PSB 1911+11 2509+08 2813+04 2930-11
 EMI 9900+11 2905+09 2811+05 2927-10

Even in these docile summertime conditions, we can expect 10 to 15 knots more tailwind component at 16,000’ than at 8,000’, which almost exactly offsets the TAS advantage of the lower altitude (144K vs. 130K). By climbing up high on an eastbound trip, we’ll go just as fast, burn considerably less fuel, and increase our IFR range nearly 400 NM! Not to mention that it’s almost always smoother and cooler up high. What’s not to like?

During the winter, when the winds tend to be stronger, going high on eastbound trips tends to be an even better deal, saving both time and fuel.

For turbos, it’s even better

If you’ve got a turbocharger, the argument for flying high becomes compelling, because the higher you fly in a turbo, the higher your speed, range and efficiency—at least up to the low Flight Levels in most turbocharged airplanes. These birds really shine up in the high teens and low twenties, and pilots who don’t take advantage of this capability don’t know what they’re missing.

For example, take a look at the “Range Profile” page for my Cessna T310R:

Cessna T310R Range Profile

Cessna T310R range profile page from POH.

Starting at 180 KTAS at sea level, max cruise speed at 73.6% power steadily increases with altitude to a relatively blistering 221 KTAS at FL200. (Above that altitude, available power starts dropping off fairly rapidly.)

Cruise Altitude Max
To fly an
800 NM Trip
5,000 190 K 860 NM 4:14 143 gal
10,000 199 K 890 NM 4:04 137 gal
15,000 209 K 930 NM 3:55 131 gal
20,000 221 K 970 NM 3:45 125 gal

Turbocharged, twin-engine Cessna T310R
(73.6% cruise, maximum gross weight  standard day, no wind,
163 gallons, 45 min reserve)

At the same time, range with IFR reserves climbs from 820 NM to 970 NM. Naturally, trip time and fuel burn for the proverbial 800 NM trip both drop accordingly—from 4:14 and 143 gallons at 5,000 to 3:45 and 125 gallons at FL200.

Personally, I don’t push my engines this hard. I almost always throttle back to between 60% and 65% power and settle for around 205 KTAS at FL200 at a miserly fuel burn of 26 gallons/hour, giving me a range of well over 1,000 NM with IFR reserves (or 1,200 NM if I fill my 20-gallon wing locker tank).

Once again, these figures assume no-wind conditions. Add in the wind on an eastbound trip and the results can get downright exciting. In the winter, I’ve seen my groundspeed edge above 300 knots from time to time. That’s fun! During the summer, on the other hand, I’m happy with 230 or 240 on the GPS readout.

Needless to say, you pay the piper going westbound. But if the winds aren’t too strong, it may still pay to go high rather than low. In my airplane, I gain 22 knots of true airspeed by climbing from 10,000’ to FL200. So if the headwind at FL200 is only 10 or 15 knots stronger than at 10,000’ (which is usually the case in summertime), higher is still better.

In wintertime, of course, westbound aircraft are all in the same boat, turbo or non-turbo. We bounce along at the MEA, try not to look at the groundspeed readout, hope the fillings in our teeth don’t fall out, and think about how much fun the eastbound part of the trip was (or will be).

Enjoy the high life!

If you’re one of those pilots who comes from the “I won’t climb higher than I’m willing to fall” school, you’ve got nothing to be embarrassed about. Believe me you’ve got plenty of company. But you’re also missing something really good.

Do yourself a favor: give high a try. It’s cooler and smoother up there. Your airplane flies faster and more efficiently up high. ATC will usually give you direct to just about anywhere. You’re above terrain, obstructions, and often the weather and the ice. The visibility is usually terrific. So are the tailwinds, if you’re lucky enough to be going in the right direction. Try it…you just might like it!

When Good Enough Just Isn’t

Wednesday, October 21st, 2015

Tony Kern, CEO of Convergent Performance

I spent much of last week in Wichita, the nation’s air capitol, to attend an annual safety trek known as the Safety Standdown, jointly hosted by Bombardier and the National Business Aviation Association (NBAA).

This 19th edition of the event drew about 450 attendees and another 1,100 online to listen to a host of smart, savvy aviators speak passionately about the need to head off accidents before they happen.

Before we prang an airplane applies to all of us and certainly doesn’t sound like rocket science anyway, does it? Read through the latest NTSB statistics and you’ll realize this simple philosophy apparently was rocket science to the pilots of the 566 GA accidents in the first eight months of 2014. The question of course is why?

Now if I start talking about professionalism in the midst of these accidents statistics most readers will think I’m referring to big-iron pilots paid to fly.

On the surface, professionalism’s a tag that on the surface doesn’t seem to fit with an Archer or a Cirrus driver, but it should, because thinking professionally, according to Dr. Tony Kern of Convergent Performance, can shape how we fly. At the Safety Standdown, Kern was an engaging, take no prisoners, kind of speaker and his logic is tough to refute once you’ve listened and let the philosophy sink in (watch his opening session talk).

Consider the Practical Test Standards, a booklet anyone who’s earned a pilot certificate knows well. It’s all about the limits the flight test examiner expects us to work with … how many feet + or – an applicant can stray in altitude, heading and airspeed for example. Meet the minimum standards for the pilot certificate and you’re probably home free. Airline and biz jet pilots fly to their certificate standards during their annual recurrent training too. They’re just checked once or twice a year. (more…)

Back to Flying Basics, Aided by a Box

Tuesday, September 29th, 2015

Flight training devices can save pilots time and money, if they are just willing to give them a try.

I’ve been teaching people how to fly airplanes for 30 years now, and at this point people tell me I’m pretty good at it. One thing I learned early was that the cockpit environment is a horrible classroom. It’s noisy, full of distractions, occasionally unpredictable and, if the airplane is not tied down with the engine shut off, it is constantly moving through space-time.

This is a challenge to the senses of your typical flight student in the first few lessons of any flight training program. Frankly, any sane human being is scared of it, at first, though few would admit to it.

And while we’re confessing, here’s another little talked-of industry secret: flight instruction is a life-and-death struggle for your typical certificated flight instructor (CFI), who has to keep the airplane from killing anyone, all the while avoiding violating any number of hundreds of FAA regulations. We do this as we simultaneously teach a planned lesson and transfer knowledge to the aforementioned overwhelmed student. Try it sometime. It is harder than it looks.

Ground flight simulation evolved from these realizations. On the ground, in a flight training device, CFIs can better control how any flight lesson is going to play out. Why? Because they hold most of the cards; no sudden ATC amendments to lesson plans, no unexpected flashing alternator-out lights, no tilted, giving up the ghost gyros mid-lesson (unless he chooses that) and no unanticipated airspace restrictions or weather anomalies. Total control. Ah….every teacher I know, no matter of what discipline or age group, will tell you that really does feel good.

The original Link Trainer was created in 1929 out of the need for a safe way to teach new pilots how to fly by sole reference to instruments on the aircraft panel. Ed Link used his knowledge of pumps, valves and bellows (honed building organs in his day-job) to create a flight simulator that responded to the pilot’s controls and gave an accurate reading on the instrument panel. These simulators were little blue plywood boxes with real gyro instruments inside and the reason they moved is because they had to so that those gyros in the instruments would work as they did during true flight. Our national hero, Jimmy Doolittle, was a pioneer of the basic instrument scanning techniques we still use today, and he was one of the first of thousands of pilots to use a Link Trainer, too.

“Please don’t put me in that box,” many a trainee begged. It was a tight fit for the big guys. Dark. Hot. Smelly if the pilot before you perspired heavily or tended toward motion sickness. Claustrophobia isn’t necessarily innate—for a lot of us it was an “earned” malady. No wonder few civilian pilots wanted to use them.

Today we don’t need motion or small, dark boxes to simulate flight. Even companies such as Frasca and Redbird Simulations, which make motion simulators, would agree (they make fixed flight training devices, too). The modern computer programs teaching flight by reference to aircraft panel instruments range from hokey and video game-like, but pictorially effective, to extremely sophisticated flight training devices that are accurate in control feel. And they are affordable, as long as you are not looking for a device on which you can officially log time (those start at $3,000 USD and range up).

Even with the cost of a flight instructor factored in, practice with a basic flight training device can save flight students and wizened old-timers alike time and money. And best of all, flight simulation lessons aren’t dependent on outside weather conditions!

I swear by the efficiency of teaching basic flight by instrument skills and airport instrument approach procedures in flight training devices. That said, I would not tell a pilot to use a flight training device for learning or proficiency without flight instructor supervision. Why? Because bad habits are easy to form and hard to shake. A flight instructor can quietly analyze your instrument scan, flow use and checklist use, and provide you with tips and short-cuts that will make managing the cockpit environment during flight both more efficient and safer.


ATC and pilots: When to keep your mouth shut and when to speak up

Monday, September 21st, 2015

This sounds a bit pathetic, but most of the professional pilots I’ve known in my life have been smart alecks, me included … always ready with an opinion, whether anyone asked for it or not. We’re all control freaks to some degree I suppose, not an earth-shattering revelation of course, because those are the kind of people you want around when it’s time to grab the controls and say, “I’ve got it.”

Sometimes knowing when not to grab the microphone in the cockpit though, can be just as important, especially for me when it comes to ATC at least. I spent a decade of my aviation life in a control tower and behind a radar scope, which was just enough to qualify me – by my standards of course – as an expert.


Madison Wi (MSN)

Case in point to grabbing that microphone occurred at Madison, Wis., a few weeks ago with a student in the Cirrus. We were VFR in right traffic for Runway 31 and requesting multiple “option approaches,” the ones that leave it to us to decide whether we’ll make a full stop, stop and go, low approach, or whatever might be left. The long runway, 18-36, was closed for construction and some itinerant traffic was using Runway 3-21. BTW, tower assigned us Runway 31 which I did wonder about with traffic on Runway 3, but then since every controller runs their traffic patterns a little differently I thought no more about it.

After the third or fourth option approach, the tower cleared us to land on Runway 31, but never explained why. On touch down, I simply forgot and told the student “let’s go” and he added full power and reduced the flap setting. As soon as we broke ground the “cleared to land” part flashed in my mind. Maybe 100 feet in the air, the local controller in MSN tower firmly reminds me that when he says cleared to land, he means cleared to land. I really tried not to respond, but of course I did, “Sorry about that. My fault. But 18/36 is closed right?” as in, so what was the real problem other than my failure to follow orders. I honestly didn’t know. Someone in the tower keyed the mic as if they were going to say something and then decided against it. We landed about 15 minutes later and the ground controller reminded me that I had earlier been cleared to land on Runway 31 and that they really need me to follow instructions in the future. Of course you know I keyed the microphone and asked again what the issue was other than blowing the order … “Did I conflict with some other aircraft?” “No, but you were cleared to land, not for an option,” he said. Since the other pilot was becoming uncomfortable with the exchange I just said, “Roger. Thanks,” and let it go. After all, I did blow it. I just would have liked to have known a bit more, but I decided to just let it go.


Kenosha Wi. (ENW)

Jump ahead a month or so and I’m again acting as CFI in the traffic pattern at Kenosha, Wis., this time having watched the other pilot I’m flying with land out of a really nicely handled circling instrument approach. We decide to stay in the VFR traffic pattern for a bit so the controller in the tower – obviously working both tower and ground himself – taxies us to Runway 7 Left. As we taxi, I hear him chatting with a Citabria pilot he’s sending to Runway 7 Right. About now I became occupied watching my pilot prepare for another takeoff.

Some part of my brain must have heard the tower clear the Citabria for takeoff from the right runway with a left turn out, just before he cleared us from the left runway, but it remained one of those distant notes in my brain until we were about 200 feet in the air. That’s when I saw the taildragger cutting across our path from the right. I instinctively told the pilot I was flying with to head right behind the Citabria as the ENW controller mentioned him as “traffic ahead and to our right.” He was a lot more than that. If we hadn’t turned, it would have been close.

The pilot flying with me looked at me in wonderment as I just shook my head and keyed the microphone … “nice tower.” No response.

I rang the tower manager a few days later on the phone because I wanted him to know how close I thought we would have been had we not banked right after takeoff. I told him I thought the ENW tower controller just plum forgot about the taildragger off the right when he cleared us for takeoff. I got it. It happens. I just wanted to see if I’d missed something here too.

Sad to say but the tower manager at Kenosha never rang back. This is where it becomes tough for me. Should I ring the tower manager again and risk sounding like a know-it-all? I make mistakes too. What do you think? Let me know at [email protected].

Perspectives on GA safety

Tuesday, September 8th, 2015

Well, it’s that time of year again: as summertime recedes in the rear-view mirror, I’m packing my computer bag, a few snacks to eat on the (Air)bus, and heading back to school.

In case you’re wondering, yes, I did graduate from high school. And college, believe it or not — I’ve got the diploma to prove it! No, this late summer tradition is my annual trip to Dallas for recurrent training on the G-IV: five days of classroom learning and simulator sessions, ending with a formal checkride.

One of the questions typically asked by the instructor on our first day of class is if anyone has experienced anything in the previous year which was particularly noteworthy or unusual. A system failure, something of that nature. I’ve been pretty fortunate; the company I fly for does a bang-up job maintaining the fleet.

But while mentally reviewing the past year’s trips, my mind drifted off to the place where my heart truly belongs: light general aviation flying. Maybe it’s because the latest Joseph T. Nall Report was recently released by AOPA’s Air Safety Institute. Anyway, I don’t mind admitting a bit of wistfulness that GA can’t claim the same safety record that air carriers — even non-scheduled ones like mine that fly all over the world at a moment’s notice — enjoy.

Nevertheless, in an odd way I take comfort in the fact that the Part 91 safety record isn’t as good. That probably sounds awful, but look at it from a logical standpoint: Part 121/135 represent very specific kinds of highly structured and limited flying, whereas “GA” represents everything from airshow acts and experimental aviation to medevac and ultralights. It covers a wide and vibrant variety of aviation activity.

GA has a higher accident rate than the airlines for many reasons, but the primary one is that GA pilots have the freedom to do many things that the airline guys do not. And I hope that never changes. To paraphrase Dick Rutan, where would we be without those who were willing to risk life and limb using their freedom to do these things? We’d be safe and sound, on the ground, still headed west as we look out over the rump of oxen from our covered wagons.

Whether it’s cruising down the coast at 500′ enjoying the view, taking an aerobatic flight, flying formation, flight testing an experimental airplane, or landing on a sandbar, beach, grass strip, or back-country field, it’s important that private individuals not find themselves restricted to the ways and means of Part 121 operations. We do the stuff that makes flying fun! Doing it “like the airlines” can only drive up the price and suck out the fun of aviation. For better or worse, part of that cost is in increased risk.

Richard Collins stated this quite elegantly when he said, “Lumping general aviation safety together is an accepted practice but it is not realistic. The activities are too diverse and need to be considered separately. There is instructional flying, recreational flying, agricultural flying, private air transportation flying and professional flying. The airplanes range from ultralights to intercontinental jets. Even in the same area, different airplanes have varying accident rates. The only safety concern that spans everything is crashing but the frequency of and reasons for the crashing vary widely according to the type flying and even the type aircraft flown. In each area, the safety record we get is a product of the rules, the pilots involved, the airplanes, and the environment in which the pilots fly those airplanes. To make any change in the record, one or all those elements would have to be modified.”

I don’t always see eye-to-eye with Collins, but this is a case where we are in violent agreement. One of the beauties of our Part 91 is that the pilot gets the freedom to choose how far he wants to go in that regard. If you want to file IFR everywhere and only fly with multiple turbine engines in day VMC, fine. That’s your choice. For others, flying in the mountain canyons in a single-engine piston and landing on a short one-way strip on the side of a steep hill is well within their risk tolerance. There are some (I’m looking at you, Team Aerodynamix) for whom a large group of owner-built airplanes flying low-altitude formation aerobatics at night is perfectly acceptable. Whether we are personally engaged in that activity or not, how can one argue that these activities don’t benefit the entire GA community? What excitement and passion they engender for aviation! And how they set us apart from the rest of the world, who for the most part look on with envy at something they will never be “allowed” to do.

Don’t get me wrong. I’m certainly not opposed to better equipment, more training, or higher standards for general aviation. Those things are all important, and I advocate for them constantly. But if experience has taught us anything, it’s that these measures will only be effective when they come from within rather than being imposed from a bureaucracy which already demands so much.

Can a Mentor Really Help?

Tuesday, July 21st, 2015

EAA1Where better to think about mentors – people willing to share their industry expertise with newbies – than as I unpack my car at AirVenture 2015. This place is crawling with mentors.

One of the secrets to success, of course, is connecting capable mentors with the people who need a little mentoring … maybe even quite a bit of mentoring. Since this is my 50th year as an EAA show attendee, allow me to share a few tips.

First, I think almost everyone can benefit from the help of a good mentor. There is simply no reason an aspiring mechanic, pilot, air traffic controller, or anyone else with a keen interest in aviation, should fall into the same dark holes the rest of us have over the decades. Allow us to help you steer clear.

A good mentor listens and makes suggestions to help a student overcome most any hurdle, whether they’re struggling with a particularly troublesome knowledge course, a too-often empty checkbook or the search for a cure to a bad case of the, “I’ll never get this …” We’ve all been stuck at one time or another by “Now what do I do,” too.

The only difference between long-time career people and you is that somehow we’ve already figured out the way around some of the obstacles that been dropped in front of us … and so can you, if you ask for help.

Assuming you’re receptive to the idea, finding a good mentor is often where associations like AOPA, EAA and Women in Aviation can help. If you’re on the road to becoming a professional pilot, for instance, check out ProPilot World for advice from men and women who’ve already been successful climbing various rungs of the career ladder.

mentorIt’s important to realize that a student shares some of the responsibility for a successful relationship, because it’s a bit like dating. It’s apparent pretty quickly when everything clicks and almost as quickly apparent when the chemistry’s not right.

Look for a mentor who’s patient and curious about your life, your story and your goals. Connect with someone who’s more interested in telling war stories than offering help with resources to pass an FAA knowledge test, for example, and you probably have the wrong person. Pose a question that brings only a shrug of shoulders rather than help finding the answer and trust me, it’s just not a good fit. Say thanks to the person and move on to someone else.

I think the key to success in any career is knowing when to ask for help and then being relentless until you find it. I know I’ve only scratched the surface here, so if you find yourself stuck along the way, e-mail me and I’ll help. [email protected]

Rob Mark is a Chicago-based business-aviation pilot, flight instructor and journalist. He publishes the award-winning industry blog, and spent 10 years of his life as an air traffic controller for the FAA. He claims to have been lucky enough to know a couple of great mentors in his life and believes he could have had more if he’d only asked.

Notes from Paris: F-WILE Beguiles and Intrigues

Monday, June 29th, 2015

There are a lot of interesting aircraft displayed during the Paris Air Show every two years, but only one LSA caught my eye in 2015: the Airbus E-Fan technology demonstrator, designated experimental F-WILE. You can see it fly at the link here. Take the time to listen to the entire 7.5 minute audio (it’s okay if you don’t speak French, the British announcer repeats the narration in English halfway through). And turn up the sound. Listen. Air

What do you hear? Almost nothing behind the narration, not because they have manipulated the soundtrack. The E-Fan is practically silent. Its two 43 hp ducted fan motors barely hum as they push its all-composite airframe through its high speed and low speed passes at Le Bourget just a couple weeks ago.

The two-seat technology demonstrator proves that electric flight can solve some of Europe’s pressing issues with flight training, and perhaps one day, with commercial flight. The aircraft noise is non-existent, as is its emissions. It is phenomenally efficient, and once equipped with swappable power-pack solutions, it will meet its mission: becoming a viable alternative to expensive-to-run, aging training aircraft.

Beyond the obvious innovations lies the beguiling inner workings of the E-Fan, specifically its cockpit instrumentation. The E-Fan Connected Cockpit brings together advances in glass cockpit instrument technology with new iconology that makes it easier for pilots to interpret the information displayed. The power management, for example, pre-calculates the effect of flight conditions such as altitude, airspeed and terrain profile. The status of available electrical energy is displayed on a removable computer tablet, along with the e-aircraft’s planned flight path, as well as for alternates in the event of in-flight re-routing.

The E-Fan instrument panel is yet one more innovation in the aircraft.

The E-Fan instrument panel is yet one more innovation in the aircraft.

That removable tablet is another key innovation. It serves as the navigation and training display, providing information that supplements the aircraft’s fixed left-hand Primary Flight Display. Pilots can pre-plan the flight away from the aircraft and simply insert the tablet into its place on the panel to upload and interface the flight plan. And after the flight? The computer tablet serves as a highly interactive training device in the classroom, enabling review of the flight in detail. Energy management, flight times and maintenance details can also be reviewed, allowing for easy digital logging of all relevant aircraft conditions. Conceivably, with wifi, the tablet can simply upload all data to the company server as soon as it regains connectivity, on the ramp or in the hangar. Nice.

GA benefits from the E-Fan in more ways than you can imagine. For one, the conglomerate Airbus, one of the three largest aircraft manufacturers in the world, is behind the research and development. The E-Fan did not appear on a napkin at a bar one night out of the slightly soggy brain of some nameless visionary engineer. It is a key component of the E-Thrust concept study, Airbus Group’s on-going hybrid and electrical propulsion system research, which has seen the hybrid concept study for a full-scale helicopter, the successful development of a Cri-Cri ultralight modified as the world’s first four-engine all-electric aerobatic aircraft, the demonstration flights of a hybrid electric motor glider, the flight testing of a short-range mini-unmanned aerial vehicle with an advanced fuel cell as well as the concept study of a hybrid-electric propulsion system for this rotorcraft. That is why the technology took only three years to go from vapor-ware announcement to flying demonstrator. And now that Airbus declared at the Paris Air Show that it will manufacture the aircraft for the training and LSA market, we can expect to see E-Fans ready for purchase before the decade is out.

Who can afford this kind of advanced LSA? Hey, when you are considering a fleet of them, more entities than you’d think. Also, I’d imagine the terms will be generous in the beginning, as Airbus uses these small two-seaters to refine its concepts for upscaling to its commercial aircraft fleet.

Advancing an Aviation Education … The Hard Way

Monday, May 25th, 2015
Cessna 150

Cessna 150

Last month I pointed the finger at a couple of unique instructors, both of whom were key to my life of flying airplanes. A few e-mails rightly took me to task wondering about my own role in years of education experience, so this month, I decided to share an early experience from not long after I earned my private certificate. It proves, yet again, that many of us live to be old pilots certainly because of our experience, but sometimes too thanks to plain dumb luck.

I was returning home on a warm July afternoon in a Cessna 150 with maybe 125 hours penned in my logbook. Sky Harbor airport, my base back then in Chicago’s north suburbs, is long gone, but was remembered as a single north-south, hard-surfaced runway about 3,000 feet long. The approach from the north was clear, except for the Walgreen’s HQ a mile or so away, but there were trees near the approach from the south, something the local town refused to trim because they were considered a necessary element to the graveyard they shaded near the runway 36 numbers.

My FAA examiner told me a few months earlier my private was a lesson to learn, but sometimes we simply don’t know what we don’t know.

On final approach that afternoon I saw another aircraft on the runway and knew I needed to keep an eye on him in case he didn’t clear. But of course they always did so I added flaps 40 and of course a bunch of power to make up for all the drag. For those of you who fly the 152 these days, you have no feeling for just how much drag “flaps 40” on a Cessna 150 added to an approach. Let’s just say it’s a bunch and was one reason the later 152s were limited to flaps 30. In the July humidity I could feel there wasn’t much elevator room to play with as the nose pitched up and down, but it was flying.

Then the other airplane stopped dead on the runway and I knew a go-around was needed, one that meant full power and a climb to the side of the runway to keep the airplane on the runway in site.

With all that drag and full power, the 150 kept trying to pitch up and I kept pushing back to avoid a stall. So there I was pushing the nose down for safety and not climbing and now scared to death to let the nose pitch up because it might stall. I did the next best thing … I just kept flying straight ahead creeping up a few feet at a time watching the hangars pass below with people obviously staring up wondering what I was doing.

Readers are probably wondering why I didn’t raise some of the flaps to dump some of that drag. Great question. I guess I didn’t remember much from training about go-arounds or a good way to milk the flaps up while close to the ground right then. I’m sure I must have seen a go-around at least once or twice in flight training but right then and there I kept thinking I was about to fall out of the sky.

At this point, I’m maybe half a mile north of the airport still no more than about 200 feet agl. when it came to me … the flaps were still down. So if the flaps hanging down was the problem, getting rid of them was the solution I thought. I remembered about then not to bring them all up at once, but honestly I was pretty scared watching the roof of he Walgreens HQ coming up beneath me and the Interstate just beyond.

Cessna 150 flap switch

Courtesy, [email protected]

I hit the flap switch to bled off the drag and instantly felt the old burgundy colored airplane leap ahead … that is, just before it started to fall. The early Cessna 150s had a flap switch that had gotten more than their fair share of novice pilots into trouble because it used three positions … down, neutral and up. In order to milk the flaps up, I should have brought the switch to up long enough to return to flaps 30 before returning the switch to neutral.

Of course, that’s not what I did. In my haste to climb, I just flicked the switch and in about 15 seconds went from flaps 40 to 0. The part about flaps adding lift seemed to have completely escaped me too I guess.

I only avoided parking the 150 in the Walgreens’ employee lot that afternoon by yanking back on the control wheel more out of fear than anything else. With all the drag gone and me being the only passenger, the little airplane climbed just fine back to pattern altitude and around the patch for a safe landing a few minutes later.

Forgetting that flap switch was one mistake I never made again. I also made sure I reminded students about it when I became a teacher myself years later. And yes, we practiced plenty of go-arounds before I even sent them out solo.

Those Lousy Checklists

Friday, May 1st, 2015

Ah, the checklist. If Shakespeare was a pilot, he’d have written an ode to it.

Once confined to the world of aviation, formal checklist discipline is now common in hospitals, assembly lines, product design, maintenance, and just about any other instance where loss of essential time, money, or bodily function can result from improper procedures or forgotten items.

Some pilots can’t imagine flying without one. Like a child wandering the yard without their favorite blanket, they’d quite literally be lost without that laminated piece of paper guiding them through each phase of flight. I’ve seen pilots who seemed to enjoy using the checklist more than the actual flying.

Others have a difficult time understanding why a written list is needed at all, especially in simple or familiar aircraft. “Use a flow or mnemonic and let’s get going!”, they’d say. While I disagree with that attitude, I understand where it comes from: too many badly-designed checklists.

As anyone who’s operated a wide variety of aircraft types (I’ve flown over 60) can tell you, poor checklists are more often the rule than the exception, and the worst of them will leave a long-lasting bad taste in your mouth. They disrupt the flow of a flight much the way an actor with poor timing can disrupt a scene.

One of the great aviation mysteries is why so many lousy checklists continue to exist. They’re not limited to small aircraft, either. The manufacturer-provided checklist for the Gulfstream IV, for example, is comically long. I don’t know who designs these things, but I highly doubt it’s the line pilot who’s going to be using it day in and day out.

The answer to such cosmic riddles is far above my pay grade. What I can say for sure is that it’s vital for aviators to understand both the purpose for a checklist and the proper way to use one.

The purpose should be self-evident: to ensure that nothing important gets missed. Lowering the landing gear, setting the pressurization controller, those sorts of items. The key word is important, and I think that’s where many checklists fall apart because once the document gets too long, human nature dictates that pilots will either skip items inadvertently or leave the entire thing stowed.

Proper checklist usage? Now that’s something a bit more complex. When an aviator is new to an aircraft, the checklist serves as a “do” list. In other words, each item is read and then the action is performed. Even if a cockpit flow exists and is being taught, the list will have to be read and performed one step at a time because the pilot is simply unfamiliar with the location of switches and controls.

As time goes by, the flow and/or checklist is slowly memorized. Eventually the pilot reaches the point where they’re actually faster and more comfortable performing the items from memory. There’s absolutely nothing wrong with that. In fact, it’s a good thing, because it allows the checklist to serve as a CHECK list. Once everything is done, you quickly read through the items on the page to ensure you haven’t forgotten anything.

In my experience, it’s not the neophyte who is at greatest risk for missing something, it’s the grizzled veteran who whips through the flows at lightning speed and then neglects to use the checklist at all. It’s overconfidence. They’re so sure they haven’t forgotten anything of life-altering consequence. And to be honest, they’re usually right — but that’s not the point.

I see this kind of failure quite frequently when flying glass panel aircraft with pilots who are computer-centric Type-A personalities. They’re literally too fast with the flows and need to slow down a bit.

Caution is also warranted when circumstances force a pilot to perform tasks out of their normal order. Often this happens due to interruption from ATC, line personnel, passengers, weather, or even another pilot.

Speaking of weather, here’s a case in point: I was in New Jersey getting a jet ready for departure during a strong rainstorm. We had started up the airplane to taxi to a place on the ramp where it was somewhat protected from the weather so our passengers wouldn’t get quite as soaked when they arrived. That simple action broke up the usual preflight exterior flow and as a result I neglected to remove the three landing gear pins. Thankfully the other pilot caught it during his walk-around, but it shows how easily that sort of thing can happen.

The best checklists, the ones that are truly effective, share some common traits. For one thing, they’re short and sweet. They hit the critical items in a logical order and leave the rest out.

In an aerobatic aircraft, a pre-takeoff check would cover the fuel selector, canopy, fuel mixture, flight controls, etc. In a swept-wing business jet, on the other hand, the critical items are different. Flaps become a vital item, because unlike other aircraft, if those aren’t set right the airplane can use far more runway than you’ve got available. It may not even fly at all.

Checklist design and usage is an under-appreciated skill. As with many things in aviation, when it’s done right it’s a thing of elegance. Art, almost. So next time you’re flying, take a critical look at your checklist and the way you use it. How do you — and it — measure up?