Archive for the ‘Business aviation’ Category

The Weakest Link

Thursday, April 16th, 2015

If one particular component of an aircraft was determined to be the root cause of 90% of all accidents, wouldn’t we have an Airworthiness Directive out on it? Wouldn’t it be replaced completely? Well we do have such a component: the pilot.

We’re at the point where this isn’t just an academic exercise. A pilot-free airliner or business aircraft is well within the realm of today’s technology. NASA has been researching single-pilot airline cockpits; that gets us halfway there. Corporate aircraft ranging from King Airs to Citations have been certified and operated by a single pilot for decades.

On the other hand, after the Germanwings disaster virtually every airline now has a policy ensuring there are never less than two people on the flight deck — the exact opposite. So which way should we be heading?

Your average pilot probably doesn’t think of him or herself as the weakest link. I certainly don’t. But those pesky statistics…

It brings to mind the illusory superiority bias, that statistically improbably belief of being above average. The most famous example concerns drivers:

According to a study published in a Swedish Psychology journal (Acta Psychologica) a whopping 93% of Americans consider themselves above average drivers. The sample consisted of students, and while the study was conducted in multiple countries, it because obvious that Americans saw themselves as even better drivers than their Swedish counterparts. The Swedish came in at a much lower 69%.

In another similar study by McCormick, Walkey and Green (1986) drivers rated them 80% above average.

Despite extensive training on hazardous attitudes and ADM, pilots aren’t immune to this phenomenon. We’re still human. In fact, the successful, driven type of personality our avocation attracts probably make it more common than in the automotive world. If 93% of drivers feel they’re above average, one wonders how high the needle swings on the pilot population. Who among us wants to admit that despite the massive investment of time, effort, and money we are still subpar?

Are we the weakest link?

Are we the weakest link?

That sort of acknowledgement can be pretty hard on a person’s self-image, but aviators should care about this phenomenon because nine out of 10 accidents are attributed to pilot error. In other words, we literally are the weakest link.

I certainly include myself in that statement. If I had a dime for every mistake I’ve made over the years! Sometimes I think I’ve made them all. In fact a friend of mine — a professional pilot who is known as an excellent aviator — once said that in reviewing the NASA-style safety reports made by line pilots at his company, “I find I’ve made every one of those mistakes myself. Every single one.”

To err may be human, but it’s grating to find myself making the same mistake multiple times; doing so runs a little too close to Einstein’s definition of insanity. For example, I’ve flown while suffering from active food poisoning on two occasions. The circumstances were not identical, but you’d think I’d have learned enough from one episode to have avoided the other.

The first case hit me during a picnic at the Santa Ynez Airport. I had two choices: stay in town or fly home. I chose the latter, and while I made it back without incident, it was a lousy decision to takeoff when feeling so bad.

The second incident occurred at an aerobatic contest in Delano, California. These contests take place in areas where it’s hot and windy. Pilots assist with contest operation when they’re not flying, meaning we’re busy and spend most of the day out in the sun. It’s common to end up dehydrated even while drinking plenty of water. I ate something which didn’t agree with me, and by the time I realized how bad the poisoning was, I’d already flown a hard aerobatic sequence.

This is why I’ve come to be a big believer in the IMSAFE checklist. Amy Laboda just wrote about the importance of this checklist a few days ago. If we can ensure the biological component of our flying is in airworthy shape, the odds of a safe flight rise considerably. IMSAFE isn’t even a complete checklist. It doesn’t mention nutrituion, for example — something my wife will tell you I sometimes ignore.

Pilots may be the cause of most accidents, but in my experience they’re also the cause of many “saves”. Quantas 32, Apollo 13, United 232, Air Canada 143, and USAir 1549 are just a few famous examples of human ingenuity keeping what should have been an unrecoverable mechanical failure at bay. I know of several general aviation incidents which turned out well due to the creative efforts of the pilots. These typically don’t make the evening news, and I imagine there are countless more we’ll never hear about, because when a flight lands without incident it doesn’t generate much attention or publicity. Accident statistics do us a disservice in that regard.

This is why I feel removing humans from the cockpit is not the answer. Commercial flying already holds claim as the safest form of transportation. Light general aviation is a different story, but that’s the price we pay for the incredible freedom and diversity offered by Part 91. No, we would be better served by focusing on improved aeronautical decision making, self-assessment, and training. As I’ve found through bitter experience, it’s a constant battle. Just because you’ve made a thousand flights without incident doesn’t mean your next one will be safe. It’s up to each of us to maintain vigilance throughout every single one of our airborne days.

Statistically speaking, we are the weakest link. But we don’t have to be.

How Far is Far Enough?

Monday, March 9th, 2015

There’s an old saying about fuel: unless you’re on fire, you can never have enough. I wonder, is the same thing true of an aircraft’s range?

With a 7,000 nautical mile reach, Gulfstream’s G650 was already an ultra-long range business jet before the ‘ER’ edition tacked on an additional 500 nm of capability. The G-series flagship recently set two records while flying around the world with a single fuel stop.

To be fair, Steve Wynn’s G650 flew eastbound from New York to Beijing and continued east to Savannah, Georgia for a total distance of 13,511 nautical miles. While that may satisfy the practical definition of the phrase, it doesn’t come close to the actual 21,600 nm equatorial circumference of the planet. Lest you think I’m picking nits, consider that you could fly “around the world” near the north pole with a Cessna 172 and do it on a single tank of gas. Get close enough to the pole and you could walk around the world in a few seconds. Doing so wouldn’t necessarily make you Superman.

Clearly, some kind of definition would be helpful. For the purposes of aeronautical records, a circumnavigation is considered by the Fédération Aéronautique Internationale to be a flight which a) covers a distance no less than the length of the Tropic of Cancer, b) crosses all meridians, and c) begins and ends at the same airport. In other words, the FAI’s criteria requires a minimum flight of 19,853 nautical miles, or 6,342 further than Wynn’s G650 traveled.

This is not to denigrate the G650’s achievement. They flew a long way, and did it at a high rate of speed — Mach 0.87. The city pair records it set on this trip will probably stand for a long time. But I can’t help but wonder, how much further could a person want to go? How much range is “far enough”? Since the globe is 21,600 nautical miles in circumference, one might be tempted to assume the answer is 10,800 nm. If airplanes were used to travel between random geographic points, that might make sense, but they’re using to travel between airports. Usually the ones near major cities.

One of the longest city pairs is Rio de Janeiro to Tokyo, about 10,000 nautical miles. Auckland to London is about the same. If that was the typical mission, the G650ER’s 7,500 nm range could still be improved upon by a longer-range airplane. But for the vast majority of pairings on our little blue marble, the ER can already do it on a single tank.

It seems to me that eking out those final miles may come at a steep price. Beyond the monetary cost, it would involve heavier weights, longer wings, the requirement for additional crewmembers, and so on. Even if the only thing needed was greater efficiency via winglets, incremental engine improvements, aerodynamic cleanup, and so on, it would still require vital resources like time and money — limitations every bit as real as the ones we face with smaller aircraft.

So should we expect to see longer range airplanes being developed, or will future emphasis be placed on speed and comfort? As always, the market will dictate the answer. Nobody develops a $60 million conveyance without extensive consultation with their client base. It’s worth noting that the G650 is such an exceptional product because it made significant strides in speed, range, and comfort simultaneously. That’s rare. By contrast, the upcoming G500 and G600 don’t break new ground in terms of speed or range, but do provide improved technology and most of the 650’s hallmark capabilities at a lower price point.

I’ve gone on record as predicting that the next big jump will be an increase in cruise speed — namely, a supersonic business jet. At the end of the day, that’s the ultimate goal: compressing time. Eliminating fuel stops is certainly one way to do it, but that only takes you so far. What comes next when the need to refuel is gone? Once the sound barrier is broken, the race will really be on. You’ll see officially recognized circumnavigations occurring on a much faster and more frequent basis, and business aviation’s value will rise exponentially.

Think outside the traffic pattern: If you build it, they will come!

Sunday, March 8th, 2015

Find ways to make your home ‘drome unique and reap the dual benefits of increased activity & fun.

Santa Rosa-Route 66 Airport [KSXU], NM  A Ride from Police  Flying home from AirVenture last year on flight following with Albuquerque Center when the controller asked me if my destination was Santa Rosa-Route 66 airport [KSXU]. I said, “Affirmative KSXU.”  He then said, “If you are in need of a courtesy car make sure to check the bulletin board in the FBO for instructions.”I thanked him for the information, although I thought it was a little odd for ATC to offer suggestions on ground transportation. Landing about 3:30 p.m. after a long flight, I was a little dismayed not to see a car outside the FBO.

Getting a ride and a little history of Santa Rosa-Route 66

Getting a ride and a little history of Santa Rosa-Route 66

Santa Rosa airport is about 4 miles out of town and the idea of walking in to town wasn’t so appealing.  There were a few other planes on the ramp and a small concrete block FBO building. When I went inside and took a look at the bulletin board I was surprised to see a sign that said to call the Santa Rosa Police Department for a ride in to town. Even though I was a little nervous about it, I called the number on the sign and told the dispatcher that I was at the airport and needed a ride.  “We will send a cruiser out for you in a moment.”  she said.

Sure enough, in about five minutes up rolled a police cruiser and driven by a very nice young officer.  He helped load up the bags and I got in the back of the car.  A little caveat that I have never been in the back of a police car.  The funniest part was when I tried to open the car door to get out when he stopped at the hotel.

Here are some more examples of bringing some fun to the airport, which in turn brings visitors and economic gain.

Pecos, Texas [KPEQ] Homemade Burritos for All  The FBO managers of Pecos Texas offer their visitors homemade burritos, chips and salsa.  This airport gets a fair share of military and business customers.  Texas hospitality and the yummy food entices folks to stop, stay and buy fuel.

Beaumont, KS [07S]  Taxi Plane to Town  This $100 Hamburger stop  in southern Kansas allows you to land and taxi in to town. The runway of prairie grasses about a quarter mile east of “town” such as it is north-south orientation, about 2,600 feet long, sloping downhill from north to south.

Twin Beech taxi to town, Beaumont KS.

Twin Beech taxi to town, Beaumont KS.

You land, taxi off the south end of the runway and turn west onto 118th street , taxi west, uphill, to a three-way stop at the intersection adjacent to the jerkwater tower, across the intersection and south to the aircraft-only parking…walk north across the street and you’re there….they have a monthly fly-in breakfast, a monthly ride-in breakfast (for the motorcycle crowd), and other events through warmer months.

Priest Lake Idaho [67S]  Donuts and Coffee for Campers  Located near breathtaking Cavanaugh Bay is Priest Lake airport which has a grass strip and camping. There is a courtesy golf cart to help unload the plane and transport gear to camp site.  Each morning the caretaker brings fresh coffee and donuts out to campers .

Burning Man

Burning Man

IMG_20140823_112911

Black Rock City

Black Rock City Airport [88NV] Burning Man  In 2009 Black Rock City Airport was recognized by the FAA as a private airport and designated 88NV. With all volunteer labor, once a year a portion of playa of the desert is transformed into an airport. Fly-In guests get to land on an airport that only exists one week per year.

Alton Bay on Lake Winnipesaukee, New Hampshire [B18]  Only FAA Ice Runway in lower 48 Since the 1960s airplanes have flocked to the “ice airport”. If you are actually the PIC and land at the airport, you are eligible to purchase a commemorative hat.  According to one pilot who landed there, they are strict about the one hat per pilot rule and keep a log. 

Land on ice, get a hat

Land on ice, get a hat

We can all do a little something to make our airports attractive to guests.  The fun-factor the airports I have listed above helps increase good-will and numbers of visitors. Check out the comment section on AirNav and you will see that pilots like to leave feedback and tips for other pilots.   What can you do at your home airport?  Or better yet, what has your airport done already?  Please use the comments section below to add the unique service, attraction or treat that your airport offers.   I think that pilots are inherently kids at heart.  Let’s get the movement rolling here.  Be unique, think outside the traffic pattern. If you build it, they will come.

 

 

 

 

 

Flying Backward

Wednesday, February 11th, 2015

“Aviation in itself is not inherently dangerous. But to an even greater degree than the sea, it is terribly unforgiving of any carelessness, incapacity or neglect.”

Aviation insurance pioneer A. G. Lamplugh uttered that oft-quoted phrase more than eighty years ago, and it’s as valid today as it was back then. Like Newton’s Laws of Physics, it’s one of the basic, unchanging truths about flying: certain things simply must be done properly if we’re to avoid disaster in the air. One of the best examples would be dealing with a low-altitude engine failure.

Last week’s TransAsia ATR-72 accident is a potent reminder of this aphorism. While we don’t know the cause yet and probably won’t know the whole story for a year or more, it got me thinking about how oddly things are done in aviation sometimes. For example, airline pilots move “up” the food chain from turboprops to jets. If safety is the paramount concern, that’s backwards. Shouldn’t the most experienced pilots should be exercising their skills on the most challenging aircraft rather than the least?

While jets certainly have their pitfalls and perils, a low-altitude engine failure is generally more challenging in a turboprop. The dead engine’s propeller creates tremendous drag until it’s properly secured. Many multi-engine turboprops are equipped with mechanisms to automatically feather the offending prop, but if that system doesn’t function properly, has been deferred, or simply doesn’t exist, the pilot is faced with six levers in close proximity, only one of which will do the trick. It’s easy to pull the wrong one.

Worse yet, if the craft has an autofeather system, the pilot would logically expect it to function as advertised. He or she would have to first detect the lack of feathering, then run the identify-verify-feather drill. Unlike training scenarios, there’s a major surprise factor at play as well. In a simulator, is anyone really surprised when the engine quits? Of course not. In the real world, pilots make thousands of flights where a powerplant doesn’t fail. As much as you tell yourself with each takeoff that “this could be the one”, empirical evidence in the form of a pilot’s own experience suggests against it. That makes preparation for a low-altitude emergency a constant battle with oneself. Are we always honest about how we’re doing in that fight? Probably not.

When I flew ex-military U-21A turboprops for a government contractor, we did all our training in the actual aircraft. I’ll never forget how marginal the aircraft’s performance was, even when engine failures were handled properly and expediently. We would fly a single-engine approach into Catalina Airport, where the missed approach procedure takes you toward the center of the island and some fairly high terrain. On one training flight the autofeather system initially worked as advertised, but then started to slowly unfeather.

Turboprop flying also comes with increased risk exposure due to the flight profile. A jet pilot might fly one or two legs a day versus five, six, or seven flown by the guy in the turboprop. With more legs comes an increased statistical opportunity for that engine to quit on takeoff. Turboprops also fly at lower altitudes where they tend to be in weather rather than above it.

The reciprocating twin pilot has it even worse when it comes to performance. Most of them have no guarantee of any climb performance at all on one engine, especially with the gear down, and few are equipped with automatic feathering systems. Yet that’s where we all start out.

Contrast this with engine failure in the modern jet, where the pilot need do nothing but raise the landing gear and keep the nose straight. In my aircraft, at least, we don’t even add power on the remaining engine. Unless the plane is literally on fire, we just climb straight out for a minute or two, gaining altitude and doing… nothing. No checklist to run, and only two levers in the throttle quadrant rather than six.

John Deakin described the contrast between prop and jet quite colorfully when he transitioned into the G-IV:

“If you hear a Gulfstream pilot whine about poor performance when high, hot, and heavy, please understand, he’s whining about less than 1,000 feet per minute on one engine. I sometimes feel like slapping a chokehold on, and dragging one of these guys out to the old C-46, loaded, on a hot day, and make him do an engine failure on takeoff, where he’d be lucky to get 50 feet per minute.”

There are other places where you can see this same phenomenon at work in aviation. Consider the world of flight instruction. The least experienced CFIs typically start off by teaching primary students. Again, that’s backwards. It would seem more logical to start instructors off with checkouts and endorsements for experienced pilots or commercial certificate training. Putting the best, most experienced CFIs with the neophytes might help accelerate their progress and alleviate the high student pilot drop-out rate.

The Law of Primacy — something every CFI candidate learns about — tells us that “the state of being first, often creates a strong, almost unshakable, impression. Things learned first create a strong impression in the mind that is difficult to erase. For the instructor, this means that what is taught must be right the first time.” Primary flight training literally sets the foundation of an aviator’s flying life, to say nothing of the fact that teaching primary students is one of the most difficult jobs a CFI can undertake. So why is this critical task mainly entrusted to the newest, least experienced instructors?

The answer to these questions usually comes down to money. The almighty dollar frequently plays a powerful role in explaining the unexplainable in aviation. While it would be unrealistic to deny the importance of financial concerns in defying gravity, whole sections of the aviation ecosystem run backwards and one can’t help but wonder if perhaps safety suffers because of it.

Flying When the Big Game is On, with a Twist this Year

Friday, January 23rd, 2015

Super Bowl Sunday is but two weekends away, now, and with that in mind pilots planning to fly in the southwestern United States (and even a touch of northern Mexico) need to take note. A high profile TFR encompassing the bulk of the Phoenix, Arizona, area will be in effect the day of the Super Bowl. Plus, a special flight notice out of the Las Vegas, Nevada, area denotes that GPS testing (click here for the advisory) will occur before and after the big game.

The GPS outages could come anytime during the GPS testing, slated for January 23rd to February 15th, 2015.

Well, not anytime. Last week AOPA Vice President of Government Affairs Melissa Rudinger contacted the FAA, who contacted the Air Force, who have now agreed to suspend GPS testing the day before, day of, and day after the Super Bowl.

But why is the conjunction of these two events still something to watch for? Well, just read the gist of the flight advisory:

GPS (including WAAS, GBAS, and ADS-B) may not be available within a 522nm radius centered at:

The expanse of GPS testing going on in the southwestern US this winter is astounding.

The expanse of GPS testing going on in the southwestern US this winter is astounding.

371900N,1155023W 

FL400-unlimited decreasing in area with decrease in altitude defined as:

482nm radius at FL250,

449nm radius at 10000ft,

378nm radius at 4000ft AGL

365nm radius at 50ft AGL

The impact area also extends into the mexican FIR. Pilots are strongly encouraged to report anomalies during testing to the appropriate ARTCC to assist in the determination of the extent of GPS degradation during tests.

Yep, you are reading this right. There will be GPS outages at the same time that there will be a concentration of aircraft arriving and departing one of the southwest’s largest urban areas. Pilots operating to and from the Super Bowl, or just around the general Phoenix area need to take the time to review their ground-based navigation skills.

I question the commonsense of running GPS testing that could result in outages in the days leading up to an event such as the Super Bowl, but it looks like those arriving a few days early to enjoy Arizona’s sunshine, or lingering more than a day after the big event will have to deal with it.

So how should you prepare? You could brush up on your knowledge and usage of VOR based navigation, for one. Remember Victor airways? You’ll probably get cleared to an intersection or two. Might even have to hold! If you haven’t used the ground-based navigation devices in your aircraft for a while, or even shot a ground-based navigation non-precision approach, now is the time to practice.

And for those of you who operate VFR? Some of the best ground navigation devices out there are actually not attached to your airplane. I’m talking about your eyes and a good old fashioned sectional. Yes, pilotage. Even if you decide that you have too much invested in your iPad charting to ante up for a paper version you can use your app—you may have to pan your way across the chart manually, though.

The FAA recently updated the special security notam relating to sporting events (find it here). If you haven’t had time to look it over here is the short version: all aircraft operations, including parachute jumping, unmanned aircraft, and remote controlled aircraft, are prohibited within three nautical miles and under 3,000 feet of any stadium or racetrack having a seating capacity of 30,000 or more people. You can find a list of stadiums and speedways here. The standard TFR is in effect an hour before to an hour after each event.

For the upcoming Super Bowl at the University of Phoenix Stadium the notam for its special TFR is out. Within the 30 nautical mile TFR ring around the stadium there will be no flight training, practice instrument approaches, aerobatic flight, glider operations, parachute operations, ultralight, hang gliding, balloon operations, agriculture/crop dusting, animal population control flight operations, banner towing operations, sightseeing operations, model aircraft operations, model rocketry, seaplane/amphibious water operations, unmanned aircraft systems (UAS), and commercial cargo carrier operations unless they comply with their respective TSA approved security program. Within the TFR area: all aircraft must be on an active IFR or VFR flight plan with a discrete beacon code assigned by ATC; aircraft must be squawking the discrete code prior to departure or entering the TFR and at all times while in the TFR; aircraft are not authorized to overfly the inner core while attempting to exit the TFR; and two-way communications with ATC must be maintained at all times. Only approved law enforcement and military aircraft directly supporting the Super Bowl and approved air ambulance flights, all of which must be squawking an assigned discrete transponder code and on an approved airspace waiver are permitted within the 10 nautical mile inner core of the TFR.

Please check the current notam for updates.

Intercept proceduresBe ready with a good rendering of the TFR and the ability to navigate around it or receive a squawk code and stay in communication with ATC when you are anywhere near it. And if you are intercepted by U.S. military or law enforcement aircraft, remain predictable. Do not adjust your altitude, heading, or airspeed until directed to by the intercepting aircraft. Attempt to establish radio communications with the intercepting aircraft or with the appropriate ATC facility by making a general call on guard (121.5 MHz), giving your identity, position, and nature of the flight. If transponder equipped, squawk 7700 unless otherwise instructed by ATC. Comply with interceptor aircraft signals and instructions until you’ve been positively released. For more information, read section 5-6-2 in the Aeronautical Information Manual (AIM). Fly safe out there!

Upset Recovery Training vs. Aerobatics

Tuesday, October 28th, 2014

Upset recovery training has been all the rage over the past couple of years. A Google search of that exact phrase returns more than 24,000 results. There’s a professional association dedicated to such training. ICAO even declared aircraft upsets to be the cause of “more fatalities in scheduled commercial operations than any other category of accidents over the last ten years.”

Nevertheless, I get the impression that some folks wonder if it isn’t more of a safety fad than an intrinsic imperative. It’s hard to blame them. You can hardly open a magazine or aviation newsletter these days without seeing slick advertisements for this stuff. When I was at recurrent training a couple of months ago, CAE was offering upset recovery training to corporate jet pilots there in Dallas. “If I wanted to fly aerobatics, I’d fly aerobatics!” one aviator groused.

He didn’t ask my opinion, but if he had, I’d remind him that 99% of pilots spend 99% of their time in straight and level flight — especially when the aircraft in question is a business jet. I’m not exaggerating much when I say that even your typical Skyhawk pilot is a virtual aerobat compared to the kind of flying we do on charter and corporate trips. For one thing, passengers pay the bills and they want the smoothest, most uneventful flight possible.

In addition, these jets fly at very high altitudes – typically in the mid-40s and even as high as 51,000 feet. Bank and pitch attitudes tend to stay within a narrow band. Yaw? There shouldn’t be any. The ball stays centered, period. We aim for a level of smoothness that exceeds even that of the airlines. Passengers and catering may move about the cabin frequently during a flight, but it shouldn’t be because of anything we’re doing up front.

Fly like that for a decade or two, logging thousands and thousands of uneventful, straight-and-level hours and the thought of all-attitude flying can become – to put it mildly – uncomfortable. I’ve even seen former fighter pilots become squeamish at the thought of high bank or pitch angles after twenty years of bizjet flying.

Unfortunately, there are a wide variety of things that can land a pilot in a thoroughly dangerous attitude: wind shear, wake turbulence, autopilot failure, mechanical malfunction (hydraulic hard-overs, asymmetric spoiler or flap deployment, etc.), inattention, and last but not least, plain old pilot error. Look at recent high-profile accidents and you’ll see some surprisingly basic flying blunders from the crew. Air France 447, Colgan 3407, and Asiana 214 are just three such examples. It may not happen often, but when it does it can bite hard.

So yes, I think there is a strong need for more manual flying exposure in general, and upset recovery training in particular. This isn’t specific to jet aircraft, because some light aircraft have surpassed their turbine-powered cousins in the avionics department. I only wish the 1980’s era FMS computer in my Gulfstream was as speedy as a modern G1000 installation.

Defining the Problem

To the best of my knowledge, neither the NTSB or FAA provide a standard definition for “upset”, but much like Supreme Court Justice Potter Stewart, we pretty much know it when we see it. The term has generally come to be defined as a flight path or aircraft attitude deviating significantly from that which was intended by the pilot. Upsets have led to loss of control, aircraft damage or destruction, and more than a few fatalities.

As automation proliferates, pilots receive less hands-on experience and a gradual but significant reduction in stick-and-rudder skill begins to occur. The change is a subtle one, and that’s part of what makes it so hazardous. A recent report by the FAA PARC rulemaking workgroup cites poor stick and rudder skills as the number two risk factor facing pilots today. The simple fact is that windshear, wake turbulence, and automation failures happen.

The purpose of upset recovery training is to give pilots the tools and experience necessary to recognize and prevent impending loss of control situations. As the saying goes, an ounce of prevention is worth a pound of cure, and that’s why teaching recovery strategies from the most common upset scenarios is actually a secondary (though important) goal.

What about simulators? They’ve proven to be an excellent tool in pilot training, but even the most high fidelity Level D sims fall short when it comes to deep stalls and loss of control scenarios. For one thing, stall recovery is typically initiated at the first indication of stall, so the techniques taught in the simulator may not apply to a full aerodynamic stall. Due to the incredibly complex and unpredictable nature of post-stall aerodynamics, simulators aren’t usually programmed to accurately emulate an aircraft in a deeply stalled condition. Thus the need for in-aircraft experience to supplement simulator training.

Upset Recovery vs. Aerobatics

It’s important to note that upset recovery training may involve aerobatic maneuvering, but it does not exist to teach aerobatics. Periodically over the years, discussions on the merits of this training will cause a co-worker to broach the subject of flying an aerobatic maneuver in an airplane which is not designed and built for that purpose. This happened just the other day. Typically they’ll ask me if, as an aerobatic pilot, I would ever consider performing a barrel or aileron roll in the aircraft.

I used to just give them the short answer: “no”. But over time I’ve started explaining why I think it’s such a bad idea, even for those of us who are trained to fly such maneuvers. I won’t touch on the regulations, because I think we are all familiar with those. I’m just talking about practical considerations.

Normal planes tend to have non-symmetrical airfoils which were not designed to fly aerobatics. They feature slower roll rates, lower structural integrity under high G loads, and considerably less control authority. You might have noticed that the control surfaces on aerobatic airplanes are pretty large — they are designed that way because they’re needed to get safely into and out of aerobatic maneuvers.

That’s not to say an airplane with small control surfaces like a business jet or light GA single cannot perform aerobatics without disaster striking. Clay Lacy flies an airshow sequence in his Learjet. Duane Cole flew a Bonanza. Bob Hoover used a Shrike Commander. Sean Tucker flew an acro sequence in a Columbia (now known as the Cessna TTx). However, the margins are lower, the aerobatics are far more difficult, and pilots not experienced and prepared enough for those things are much more likely to end up hurt or dead.

Sean Tucker will tell you that the Columbia may not recover from spins of more than one or two turns. Duane Cole said the Bonanza (in which he did inverted ribbon cuts) had barely enough elevator authority for the maneuver, and it required incredible strength to hold the nose up far enough for inverted level flight. Bob Hoover tailored his performance to maneuvers the Shrike could do — he’ll tell you he avoided some aerobatic maneuvers because of the airplane’s limitations.

Knowing those limitations and how to deal with them — that’s where being an experienced professional aerobatic pilot makes the difference. And I’m sure none of those guys took flying those GA airplanes upside down lightly. A lot of planning, consideration, training and practice went into their performances.

Now, consider the aircraft condition. Any negative Gs and stuff will be flying around the cabin. Dirt from the carpet. Manuals. Items from the cargo area. Floor mats. Passengers. EFBs. Drinks. Anything in the armrest or sidewall pockets. That could be a little distracting. Items could get lodged behind the rudder pedals, hit you in the head, or worse.

If the belts aren’t tight enough, your posterior will quickly separate from the seat it’s normally attached to. And I assure you, your belts are not tight enough. Getting them that way involves cinching the lap belt down until it literally hurts. How many people fly a standard or transport category aircraft that way?

Now consider that the engine is not set up for fuel and oil flow under negative Gs. Even in airplanes specifically designed for acro, the G loads move the entire engine on the engine mount. In the Decathlon you can always see the spinner move up an inch or two when pushing a few negative Gs. Who knows what that would do with the tighter clearances between the fan and engine cowl on an airplane like the Gulfstream?

Next, let’s consider trim. The jet flies around with an electric trim system which doesn’t move all that quickly. The aircraft are typically trimmed for upright flight. That trim setting works heavily against you when inverted, and might easily reach the point where even full control deflection wouldn’t be sufficient.

I could go on, but suffice it to say that the more I learn about aerobatics, the less I would want to do them in a non-aerobatic aircraft – and certainly not a swept wing jet! Sure, if performed perfectly, you might be just fine. But any unusual attitude is going to be far more difficult — if not outright impossible — to recover from.

Dang it, Tex!

Every time someone references Tex Johnson’s famous barrel roll in the Boeing 707 prototype, I can’t help but wish he hadn’t done that. Yes, it helped sell an airplane the company had staked it’s entire future on, but aerobatic instructors have been paying the price ever since.

Aerobatic and upset recovery training: good. Experimenting with normal category airplanes: bad. Very bad.

Time is Money

Tuesday, September 2nd, 2014

One of the first things people discover about flying is that it requires an abundance of two resources: time and money. The money part is pretty obvious. Anyone who inquires about flight instruction at a local school will figure that one out before they even take their first lesson. The importance of time is a bit more nebulous.

When I began working as an instructor, I noticed that even in affluent coastal Orange County, at least one of those two assets always seemed to be in short supply. Those who had plenty of money rarely had much free time; they were financially successful because they worked such long hours. Younger pilots typically had fewer demands on their schedule, but funds were limited at best. It reminds me of Einstein’s famous mass-energy equivalence formula, E=mc2. But instead of matter and energy being interchangeable, it’s time and money. Benjamin Franklin took it a step further in a 1748 letter, concluding that “time is money”.

time_is_money2

I learned to fly during a period when both of those elements were readily available. It was a luxury I didn’t appreciate — or even recognize — at the time. It’s probably for the best, since I would have been sorely tempted to spend even more on my addiction.

After flying Part 135 for the past three years, it’s interesting to note how those same limits apply to charter customers despite being much higher up on the proverbial food chain. These restrictions are the very reason Part 91/135 business aviation exists at all.

Case in point: I recently flew a dozen employees of a large retailer around the U.S. to finalize locations for new stores. They were able to visit ten cities in four days, spending several hours working at each destination. Out of curiosity, I ran our itinerary through booking sites like Kayak, Orbitz, and Travelocity to see how a group of twelve might fare on the airlines. Would you be surprised to learn that the answer is “not well”?

Our first leg, three hours in length, would have taken twelve hours and two extra stops on the airlines and actually cost more, assuming business class seats. Some of the subsequent legs wouldn’t have been possible at all on the airlines because they simply don’t serve those destinations. Overall, chartering the Gulfstream IV-SP cost less than trying to do the same trip on an airline. As far as time saved, on an airline, each of those ten legs would have required passengers to be at the airport 90 minutes in advance of their scheduled departure time. That alone would have wasted fifteen hours — the equivalent of two business days.

A chartered aircraft waits for passengers if they’re running late. If they need to change a destination, we can accommodate them. Travelers spend more time working and less time idle, literally turning back the clock and making everything they do more productive. And once we’re airborne, they can continue to do business, preparing for their next meeting and using the cabin as a mobile office. They can conference, spread out papers, and speak freely without worrying about strangers overhearing sensitive information.

This time/money exchange is present on every trip. Since I’m based in Los Angeles, our passengers are often in the entertainment industry. Imagine an artist or band who had a concert in Chicago on Monday, Miami on Tuesday, Denver on Wednesday, and Seattle on Thursday. They need to be in town early for rehearsals, interviews, and appearances. These tours sometimes last weeks or even months. Keeping a schedule like that would be nearly impossible without chartering. Imagine the cast of big budget film needing to be at film festivals, premieres, media interviews, awards shows, and such. Or the leaders of a private company about to go public or meeting with investors around the country prior to a product launch. Franklin was right: time is money.

When I fly on an scheduled airline, the inefficiency and discomfort remind me of why charter, fractional, and corporate aviation will only continue to grow. The price point of private flying doesn’t make sense for everyone, but for those who need it, it’s more than a convenience. It’s what makes doing business possible at all.

Why does what happens at Santa Monica Airport matter?

Saturday, August 23rd, 2014

Santa Monica airport has been in the news lately. Most recently supporters of closing Santa Monica Airport lost a round in court. A Los Angeles judge dismissed a lawsuit that challenged a November ballot measure to protect the facility from closure. More information on the ballot initiative can be found here. Since this blog is supposed to address issues of national concern I decided to ask a few of my aviation friends from New York to Oregon a pretty simple question. “Why does what happens at Santa Monica airport matter?” I think you will enjoy their answers.

Photo Credit: Jim Koepnick

Cub in Dandelions

While even the thought of closing Santa Monica airport strikes to the heart of someone who is a pilot, it also strikes to the soul of many of us non-pilots. Why would that be, if we are only connected to aviation indirectly? The short answer is because it is really about more than just the freedom of flight…it is about plain, old freedom. It’s about the freedom to have a voice, to have a vote. To not be outmaneuvered by outside interest groups and lawyers looking for loopholes and technicalities. Even the consideration of closing down an airport, let alone one with such a fabled history, fills my mind with the classic battles of good and evil. So is this where I raise the flag, bring out the apple pie and march to support the underdog? In my simplistic, creative mind…maybe. Because keeping Santa Monica airport open is symbolic to keeping airports open all around the country. And symbolic for letting us all know that we all should have a voice in our freedoms.

Jim Koepnick, Aviation Photographer, Oshkosh Wisconsin

—————————————————————————————————————————————————————————————

The future of Santa Monica Airport is significant for a number of reasons. One is the very important issue of community security. Anyone who lives in Southern California or visits there frequently knows the entire, heavily populated area is just one car wreck away from gridlock. If, God forbid, some major catastrophe hits the area, the airport could instantly become worth its entire landmass in gold when you consider it could be the only way to quickly get emergency crews and supplies, and medical transports, into and out of the community. Ask anyone impacted by Hurricane Katrina about how valuable community airports became in getting even the basic supplies into the area.

In the aviation safety world, much is emphasized on human factors. One such factor that should be considered is the fact we have a tendency not to appreciate or understand the importance of something until it is already gone. Too often, we are easily sold ideas based on misguided information. This seems to be the case in Santa Monica and other areas threatened with airport closures. People build a home close to the airport and then complain about the noise. Then, developers see gold on the property and jump into the fray to convince community leaders that the property is a gold mine of tax revenue just waiting for them. The fact is airports are already a gold mine that contribute much more than is ever effectively recorded in economic impact. Most important is the airport’s contribution to the community’s peace of mind in the event air transportation of people or supplies is needed in an emergency. How can you put a price tag on that?

Mark Grady, Aviation writer, speaker and filmmaker

—————————————————————————————————————————————————————————————

Photo Credit: Jim Koepnick

Photo Credit: Jim Koepnick

If you keep up with any aviation news from any of the alphabet groups, you know that there has been controversy surrounding the Santa Monica airport for the past several years.

The issue is not unique to Santa Monica. At any given time, dozens of airports in the country are being pressured to shut down and the empty space turned into tax generating commercial, industrial or residential use. This shortsighted view is a dangerous one. Airports serving general aviation as well as airports serving air-carriers are part of this country’s transportation infrastructure. The argument that general aviation airports exist only to serve the “fat cats” and their private jets is a hollow one. I’ll counter it by asking why an airliner full of inebriated tourists traveling from Honolulu to LAX on their way home from a cruise is more important than an business jet with the CEO of a multibillion dollar international corporation traveling from Honolulu to Santa Monica to close an important deal that will benefit the local economy? It isn’t!

The billions of dollars lost by US airlines in the past decade are testament to the failed business model that the majority of them operate under. At least corporate and business aviation pays their bills. Let the airlines continue to run themselves into the ground at the major airports. Corporate and business aviation needs the “Santa Monicas” of this country to continue building the economic health of this country after the beating it has taken in the past decade.

Jonathan “JJ” Greenway flies corporate jets internationally for a Hong Kong based company, is a CFII and active aircraft owner who lives in Frederick Maryland.

—————————————————————————————————————————————————————————————

Photo Credit: Jim Koepnick

Heavenly Ovation

To explain why an airport somewhere far away from me matters, requires one to understand that aviation matters to me, deeply, profoundly. Aviation requires a network of infrastructure from fuel service to air traffic control to landing surfaces. Without that infrastructure, my life as I know it cannot exist. There is no way to unwind the two. Our government and forward thinking people always understood that if you could just shorten the travel time of the trade and commerce routes the world could and would change. Today, global aviation is the driving force in a massive international economic globalization. Our national aviation infrastructure, as well as federal, state and municipal budgeting to be part of that infrastructure, makes air transport possible. Rural airports provide essential services, emergency and medical transport and mail service. Community airports provide the places where pilots can train to enter the professional field, stop-overs for corporate businesses maximizing efficiencies, fuel stops for pilots ferrying passengers, cargo, mail, as well as for personal travel, and the all-important time building of pilots who might eventually join the professional ranks. Larger, municipal airports provide economic generators, protect airspace, link commerce hubs and provide jobs. International airports bring the people and goods around the world that drives our global economy.

There is an old, well-told and famous tale of a small town pilot, flying circuits in his small single engine fabric plane, looking across the ramp at the flight instructor, imagining that someday, she or he too will have that kind of time and experience. The flight instructor meanwhile is looking at the light twin taking off on a run to deliver packages and goods wishing for the day when he or she can land that dream job of flying a twin. The twin pilot is looking skyward at the regional jet launching for a mid-sized city. The regional jet pilot looks longingly at the the major airline departing ahead of him, just about to take off for an international destination. The heavy jet levels at FL 380 and watches the International Space Station [ISS] cross the sky ahead of him in the darkness, thinking how cool it would be to fly the space shuttle. Meanwhile the shuttle pilot completes a re-entry, passing a light plane pilot flying circuits over a grass field, thinking that guy has it made. This story has been told and re-told, but today the point is that every aspect of aviation relies on every other aspect of aviation. There is no flight without the infrastructure. If we want to fly to India tomorrow, we must have a rural field in Indiana, a municipal airport in Santa Monica, an internationl airport at LAX. We need fuel service, maintenance technicians, hangar space, landing surfaces, air traffic controllers, rural grass strips, cheap old airplanes laden with history and the latest technology to avoid thunderstorms and all the technicians, unskilled ramp workers, dispatchers, airport design architects, airspace managers, aeronautical engineers, military applications, flight instructors and aviation enthusiasts to make that happen and keep it alive. The alternative is to shrink the world to the size of a highway, and to slow the pace of economics to 60mph.

Rebecca Fisher, Pilot for major airline, airplane owner (C180), float plane instructor and back country air taxi pilot living in Talkeetna, Alaska

—————————————————————————————————————————————————————————————

What happens at Santa Monica matters because it’s such a high profile case. The message needs to be that GA is less of a risk than the boulevard running past your front door and the noise it introduces to your neighborhood is substantially less in every regard than that delivery truck or leaf blower that folks accommodate without even thinking. As with so many other airport “controversies,” the Santa Monica Airport battle is about pilots trying to fend off a land grab from cynical commercial and government concerns trying to exploit residents’ fears to accomplish their questionable development goals.

Robert Goyer, Editor in Chief, Flying Magazine, Austin Texas

—————————————————————————————————————————————————————————————

Photo Credit: Jim Koepnick

Photo Credit: Jim Koepnick

When municipalities are faced with budget pressures and look to airport closure as a means to save money, budget planners look at the cost of operating an airport vs. the cost of revenue the airport generates at the airport. That’s an entirely shortsighted metric. The economic impact an airport has on a community or region can’t be measured solely by the revenue generated at the airport, yet that’s often the basis of a decision to close an airport.

Our local airport, Williamson-Sodus, has an annual operating budget of roughly $145,000, which is covered by airport revenues with little to spare. A recent New York State Economic Development study estimates the impact the airport has on the local region is $2.7 million annually. That means $2.55 million of local economic impact is due to the existence of the airport. That would never be seen by the bean counters looking only at the airport ledger.

The challenges municipalities face that force them to close or consider closing an airport are not a reflection of the airport. When I see an airport close, no matter where it is, I see a community whose leaders lack vision. Unfortunately, it’s the community that suffers the loss.

Joe Ebert, Board Member, Past President Williamson-Sodus Airport, New York

 

—————————————————————————————————————————————————————————————

Photo Credit: Jim Koepnick

Photo Credit: Jim Koepnick

My ad agency specializes in two sectors, aviation and tourism. I believe these two sectors fit nicely together as general aviation airports are an under utilized asset for the cities they serve, and are a gateway to bring valuable tourism business into their areas. I have worked for years to recommend to my tourism clients that they need to promote the benefits of their region to pilots seeking new destinations, because pilots generally have discretionary income and are always looking for new places to fly their airplanes.

The financial contributions that airports bring to a city can be found in many areas, from jobs to secondary spending and yes, tourism purchases. Transient pilots flying into an airport like Santa Monica Municipal Airport (KSMO) need rental cars, meals, hotel rooms and fuel, and many continue their spending in the region by visiting local attractions or conducting business. Each airport – whether it’s a large field like KSMO or a small strip at the edge of a rural town – represents a money machine for the area, and they need to be identified as such. To close any airport means a guarantee of often substantial losses to the region, and because of this, each and every airport needs to be preserved.

Dan Pimentel, founder of the Airplanista blog and President/Art Director of Celeste/Daniels Advertising, Eugene, Oregon.

—————————————————————————————————————————————————————————————

The answer to the question depends largely on who you are, where you live, and what sort of life you hope to live in the future. If you’re an aircraft owner who bases his or her airplane at Santa Monica the answer is obvious. For the sake of convenience and comfort, that individual would prefer Santa Monica to remain open. That aircraft owner would prefer to keep their friends, their connections, their hangar, and their normal routine in place.

But what about the kid living nearby? What good does an airport do for a teenager living on South Bundy Drive? That kid grows up with airplanes zipping over his or her house day after day. Piston driven propellers drilling holes through space as turbines turn heat to thrust and propel business owners, movie stars, and trophy wives off to Las Vegas, Chicago, and New York. What good does that do?

It’s a fair question. The answer is simple. It provides opportunity that can’t be delivered by any other means.

Perhaps that kid can pull down a part-time job at the local Circle K, or the garage across the street. But what if he or she could wrangle an entry-level position at a flight school, or one of several maintenance shops on the field, or the FBO, instead. That entry level job might lead to a career in the aviation or aerospace industry, taking that teenager farther economically, socially, and geographically than they ever dreamed. It’s happened before. In fact it’s happened tens of thousands of times.

Photo Credit: Jim Koepnick

Photo Credit: Jim Koepnick

 

There are no guarantees in life, of course. Not for Santa Monica and not for any other airport, industry, or individual. But where there is opportunity, there is hope. Where there is hope, people persevere and thrive even under the most challenging circumstances. With Santa Monica Municipal up and running there is industry, entertainment, a pervasive incentive to pursue education as a lifelong goal – and there is hope. Without it, there might be a slightly larger park, or a cluster of high-rise condos, or an office park. None of which can inspire the dreams, the innovation, or the historically significant production Santa Monica Municipal Airport has given the world.

Santa Monica Municipal Airport matters for the same reason the United States of America mattered to my immigrant great-grandfather. It matters because it is the only destination of its kind in the world. And if it is allowed to perish, there will never be another to replace it. Never. And that would be a shameful thing.  Jamie Beckett, Writer, Winter Haven Florida

 

—————————————————————————————————————————————————————————————

Many thanks to my friends who answered this important question.  And thanks to those of you who read this piece and perhaps came up with some answers of your own.  I would encourage you to find out more about the charter amendment and further to contribute to funding this worthy battle. http://www.smvotersdecide.com/

We Don’t Train For That

Monday, July 7th, 2014

The tragic Gulfstream IV accident in Boston has been on my mind lately, partly because I fly that aircraft, but also because the facts of the case are disquieting.

While I’m not interested in speculating about the cause, I don’t mind discussing factual information that the NTSB has already released to the public. And one of the initial details they provided was that the airplane reached takeoff speed but the pilot flying was not able to raise the nose (or “rotate,” in jet parlance).

My first thought after hearing this? “We don’t train for that.” Every scenario covered during initial and recurrent training—whether in the simulator or the classroom—is based on one of two sequences: a malfunction prior to V1, in which case we stop, or a malfunction after V1, in which case we continue the takeoff and deal with the problem in the air. As far as I know, every multi-engine jet is operated the same way.

But nowhere is there any discussion or training on what to do if you reach the takeoff decision speed (V1), elect to continue, reach Vr, and are then unable to make the airplane fly. You’re forced into doing something that years of training has taught you to never do: blow past V1, Vr, V2, and then attempt an abort.

In this case, the airplane reached 165 knots—about 45 knots beyond the takeoff/abort decision speed. To call that uncharted territory would be generous. Meanwhile, thirty tons of metal and fuel is hurtling down the runway at nearly a football field per second.

We just don’t train for it. But maybe we should. Perhaps instead of focusing on simple engine failures we ought to look at the things that are causing accidents and add them to a database of training scenarios which can be enacted in the simulator without prior notice. Of course, this would have to be a no-jeopardy situation for the pilots. This wouldn’t be a test, it would be a learning experience based on real-world situations encountered by pilots flying actual airplanes. In some cases there’s no good solution, but even then I believe there are valuable things to be learned.

In the case of the Gulfstream IV, there have been four fatal accidents since the aircraft went into service more than a quarter of a century ago. As many news publications have noted, that’s not a bad record. But all four have something in common: each occurred on the ground.

  • October 30, 1996: a Gulfstream IV crashed during takeoff after the pilots lose control during a gusting crosswind.
  • February 12, 2012: a Gulfstream IV overran the 2,000 meter long runway at Bukavu-Kamenbe
  • July 13, 2012: a G-IV on a repositioning flight in southern France departs the runway during landing and broke apart after hitting a stand of trees.
  • May 31, 2014: the Gulfstream accident in Boston

In the few years that I’ve been flying this outstanding aircraft, I’ve seen a variety of odd things happen, from preflight brake system anomalies to flaps that wouldn’t deploy when the airplane was cold-soaked to a “main entry door” annunciation at 45,000 feet (believe me, that gets your attention!).

This isn’t to say the G-IV is an unsafe airplane. Far from it. But like most aircraft, it’s a highly complex piece of machinery with tens of thousands of individual parts. All sorts of tribal knowledge comes from instructors and line pilots during recurrent training. With each anomaly related to us in class, I always end up thinking to myself “we should run that scenario in the simulator.”

Cases like United 232, Apollo 13, Air France 447, and US Air 1549 prove time and time again that not every failure is covered by training or checklists. Corporate/charter aviation is already pretty safe… but perhaps we can do even better.

Why Returning To The “Golden Age of Aviation” Is A Terrible Future

Monday, June 16th, 2014

pilot

Here’s a Private Pilot, circa 1930. (photo credit: James Crookall)

I’m not a big fan of nostalgia. Here’s why:

The Golden Age of Aviation” was a time when the only people who flew themselves in an airplane were titans of industry, movie stars, or crazy people.

The aviation industry is on course to revert back to the 1930’s. This is bad, bad, news, because if you look at what aviation was like back between the world wars, it was a terrible time.

Folks in our community complain about how private aviation is circling the drain, that it’s a lost cause. I refuse to believe that. We just have too many things going for us. I believe the future of private aviation is viable, as long as we stop trying to relive the past.

The first few chapters of the book, “Free Flight,” by James Fallows, pretty much lit my brain on fire. It remains one of the best, most objective, primers on the state of aviation in America. The rest of the book focuses on the trajectory of both Cirrus and Eclipse and their attempts to disrupt and reinvent air travel in the last decade.

Fallows nails it when he explains that there are two kinds of people. There are “the Enthusiasts,” (You, me, and most anyone reading this.) and “the Civilians.” (everyone else.)

On Enthusiasts
“…The typical gathering of pilots is like a RV or hot rod–enthusiasts’s club. People have grease under their fingernails. The aircraft business is littered with stories of start-up companies that failed. One important reason is that, as with wineries or small country inns or literary magazines, people have tried to start businesses because they loved the activity, not because they necessarily had a good business plan.”

On Civilians
“Civilians–mean most of the rest of us– view airplanes not as fascinating objects but as transportation. Planes are better than cars, buses, or trains to the extent that they are faster. Over the last generation, most civilians have learned to assume that large airliners nearly always take off and land safely. …From the civilian perspective, the bigger the plane, the better. Most civilians view people who fly small planes the way I view people who bungee-jump or climb Mount Everest; they are nuts.”

James Fallows, “Free Flight, Inventing the future of Travel

Fallows calmly explains how travel for most of us has gotten worse, not better in the last 30 years. He stresses that the hub and spoke system adopted by the airlines post deregulation has contributed to the misery. He cites former NASA administrator Daniel Golden, who noted in 1998 that the average speed door to door traveling on commercial airlines had sunk to only around fifty or sixty miles an hour.

The book concisely charts how we got into this fine mess. He compares how air travel works today to that of the world before automobiles. In the last generation, the airlines have benefited the most from investment in development and infrastructure. Today we pack most people onto what may as well be very fast train lines that go from major metro to major metro. Cornelius Vanderbilt would be so proud.

The other side of the coin is what General Aviation has evolved to for the folks who have the means to fly private jets. The industry has done a fabulous job of responding to the needs of the very small percentage of us who can afford to operate or charter turbine aircraft. This equipment flies higher and faster than most airliners, and can get people to small airports much closer to almost any destination. Fallows shows how this is analogous to travel by limousine. Remember, when cars first appeared on the road, they were considered too complicated and too dangerous for mere mortals to operate. Anyone who could afford one, hired a professional driver. I’m sure Andrew Carnegie was chauffeured from point to point too.

So for the most part, we have trains and limousines. It’s like some bizarre alternate history world where Henry Ford never brought us the automobile.

I refuse to believe that we’re simply on the wrong side of history here.

It’s actually a pretty great time to be a pilot. The equipment has never been more reliable, the tools keep making it easier, and the value proposition keeps getting more compelling compared to other modes of travel when you note that moving about the country on the airlines or the highways keeps slowing down due to congestion. For the first time in history, for most of us the country is no longer growing smaller. It’s getting bigger.

A few examples of what excites me about the future of aviation, and what I hope can prove to be disrupters looking forward…

  • ICON A5 – A 2 seat jet ski with wings that you can tow behind your pickup.
  • Cirrus Vision SF50 – 5 Seats, single jet engine, it’s going to define a completely new category for very light jets. I imagine it to be like a Tesla and an iPad mashed together in one 300 knot machine.
  • Whatever it is that Elon Musk builds next – please, please, please, let it be a flying car.

The future is bright, as long as we don’t go backwards.