Gas turbines

February 7, 2013 by Tim McAdams

Gas turbine (jet) engines used in helicopters do not produce thrust. Instead, the air exiting the engine passes over a wheel (normally called the power turbine) with specially designed blades that turn a shaft. The shaft is geared down and connected to the transmission that drives the main rotor system. This design is called a turboshaft engine and its power is measured in shaft horsepower (shp). As in typical turbine engines, some of a turboshaft’s power is used to drive the inlet compressor or gas producer section. 

Eurocopter’s AS350 series helicopter uses Turbomeca’s Arriel line of engines. The Arriel 1B was certified in 1977 with 640shp. Throughout the years various upgrades have raised the output power, the most recent was in 2011 with the Arriel 2D at 951shp. The Arriel design uses a two stage compressor. The first stage is an axial compressor that draws in ambient air and increases its pressure and speed. It is then directed to the centrifugal compressor that further compresses the intake air to 118.9 PSI and raises its temperature to 335 degrees C before the air enters the combustion chamber. Because the centrifugal compressor is designed to be very efficient at high turbine speeds (high power demand) a bleed valve vents the excess pressure from the axial compressor at low turbine speeds (low power demand). 

The bleed valve is normally open when the engine is shutdown, during starting, and at low power settings. Unlike some compressor bleed valves the Arriel series engines’ are modulated, so as the pilot increases the power the bleed valve gradually starts closing. In the Eurocopter AS350 helicopter when the bleed valve is fully closed a green and white indicator in the cockpit disappears.  If the indicator does not disappear at high power settings, this tells the pilot that the bleed valve has failed to close and maximum engine power will not be available. If the indicator does not reappear at low power settings, the bleed valve has failed to open and the engine may experience compressor stall or surge.  In this case, the pilot should avoid abrupt power changes.