Technique Archive

Above reproach?

Wednesday, December 30th, 2009

Commenting on my gross weight blog, Harold wrote:

“Leave the flying to he who is in the cockpit and the finger-pointing blogs to another publication please.”

That got me thinking, when is it (if at all) appropriate to comment, criticize, or even intervene on another pilots actions or behavior? I understand and agree with Harold to a point, but I don’t believe the complete answer is all that clear.

I have studied and written about helicopter accidents for many years. I think most of them have a lesson that can help us all be better pilots. I try to write about these in a way that states the facts without expressly passing judgment (gross weight included) and let the readers draw what they want from the situation. Believe me, I have made my share of mistakes but I have been lucky because they didn’t result in an accident. I have viewed them as learning experiences, because had something been just a little different I might not have been so lucky. I like to tell people that I can’t promise I won’t make a mistake, but I can promise I won’t make the same one twice. Having studied many accidents it is clear that there are no new accidents only the same ones repeated over and over, just in a different manner.

I also believe that simply being a licensed pilot does not make you above reproach. Listed below are three examples of pilot behavior that other people knew was dangerous. A link to the complete NTSB report is included because all the details can’t be listed here.

A pilot flying a news helicopter was well known as a hotdog and the photographer riding with him had expressed concern. His last radio transmission was “watch this” as he pulled the helicopter vertical and severed the tail boom killing himself and the photographer.

A very experienced tour pilot flying in the Grand Canyon was well known for being a skilled pilot and for his aggressive flying. He had earned the nickname “Kamikaze.” At high density altitude he slammed into a canyon wall killing himself and six passengers.

A pilot continued to fail phase checks, check rides, and pre-employment rides. He eventually got a job where his flight skills were not evaluated prior to being hired. He crashed an R22 killing himself and a passenger on an introductory flight.

I really appreciate all the professional comments that people post. So if this subject interests you please take the time to read all the details and let us all know your thoughts. I believe that approaching this topic in the correct way can be a powerful learning tool for those so inclined to listen.

My intent is not to point fingers but to get pilots thinking about how easily an accident can happen. I know that reviewing accidents has helped me be a better pilot. However, I am very curious if other pilots find this helpful.

One final thought. I have been involved as an expert witness for helicopter accident cases in court and believe me the intense scrutiny pilots endure is not pleasant. Seeing that has given me another reason to believe that being ultra conservative to avoid an accident is well worth it.

Wire strike protection

Thursday, December 10th, 2009

I fly a Bell 206 JetRanger helicopter as a demonstration aircraft for my company’s autopilot and glass cockpit systems. It is equipped with a Wire Strike Protection System (WSPS) and many times I am asked what it is and how it works.

Bell 206 with Wire Strike Protection

Bell 206 with Wire Strike Protection

The system on the Bell 206 has three main components: an upper cutter, lower cutter, and deflectors. Each cutter has a deflector that forces the wire into sharp high-tensile steel blades (they are rubber coated to prevent inadvertent injury to service personnel). An additional deflector strip runs vertically between the pilot and copilot windscreens to guide the wire to the upper cutter. On different helicopters other deflectors are mounted as necessary to protect critical areas. For example, on the toes of the skids to force a wire to go under the helicopter and stop it from getting caught between the skid gear and the fuselage.

It is a passive protection system that reduces the chances of an accident in the event that the helicopter is flown into horizontally strung wires. The key phrase is “reduces the chances” as the system is not 100-percent effective. In order to work properly the helicopter needs forward speed; faster speeds increase the probability of cutting the wire. Also the level of effectiveness is a function of several other factors including where the wire impacts the fuselage, the cable tension, and the diameter of the wire.

The US Army evaluated the WSPS by performing pendulum swing tests using a Bell OH-58 (basically a military version of the Bell 206). The tests went well and they adopted the system for use on U.S. Army helicopters. Since then several Army helicopters have hit wires that were then cut by the system resulting in no injuries and minimal to no aircraft damage. Several civilian helicopters equipped with the WSPS have cut wires and avoided an accident as well.

Of course the best protection from wire strikes is prevention. Some things to consider are only flying below 500 agl when it’s necessary, looking for poles because they are easier to spot than wires and when you need to fly low over wires cross at the poles or supporting structures. Additionally, when landing in unapproved areas be sure to perform a complete aerial reconnaissance. If your helicopter is equipped with wire strike protection it should be viewed as a last line of defense.

Gross weight

Wednesday, December 2nd, 2009



I was in a pilot lounge at a heliport where an operator was giving sightseeing rides when a pilot returned to the loading area after getting fuel. The loaders brought out five passengers and I heard the pilot say over the radio that they put too much fuel onboard and he could only take four passengers. Right then another pilot who worked for the sightseeing operation jumped up and said, “No, don’t take the passenger back. I’ll do the flight.” He ran out and told the pilot he would take over so the pilot could take a break. As I watched the helicopter lift off, the guy standing next to me (who was not a pilot) said, “Now there goes a real pilot.” I looked at him waiting for him to crack a smile or give me some signal he was kidding. He was serious.


I have known helicopter pilots who don’t think too much about gross weight. If it can hover, it will fly fine they would say.


Case in point, according to the NTSB the pilot of a Bell 206L departing on a sightseeing flight on a hot summer day lifted the helicopter to a hover and started a takeoff run. The pilot said it felt like the helicopter did not have full power and it did not gain altitude as it neared the end of the heliport. The tail rotor struck the edge of the pier. The helicopter then hit the water, the pilot deployed the floats, and the helicopter rolled inverted.



When the pilot was questioned about the lack of engine power, he stated that sometimes dirt or dust could lodge in the fuel system and then dislodge from the impact. When asked if the helicopter was overweight, the pilot stated no, because he was able to hover with an indicated turbine outlet temperature (TOT) of 720C and 92-percent torque.


Regarding the helicopter’s weight and balance, the pilot stated that he did not ask passengers their weight and did not have a scale at the heliport. Rather, he estimated the weight and balance. For the accident flight, he estimated 150 lb. per person, as there were three male passengers and three female passengers. After the accident, an FAA inspector questioned the passengers about their weights. The passengers reported their weights as 132 lb., 176 lb., 187 lb., 207 lb., 210 lb., and 213 lb. In addition, the pilot weighed about 190 lb. Although the pilot estimated 150 lb. per passenger, the average weight of the passengers was approximately 188 lbs. Those passengers plus fuel made the helicopter about 250 lbs. over gross weight at the time of the accident, not including the weight of clothing, personal effects, and baggage.


The FAA puts the standard average weight for operators with a no-carry-on bag program to 184 lb. in the summer and 189 lb. in the winter.



Copter ILS

Monday, November 23rd, 2009

I remember in the mid-1990s Copter ILS approaches began showing up in the New York area. They came from an interpretation by the FAA’s Eastern Region of the Part 97 U.S. terminal instrument procedures (TERPS) that granted helicopters lower minimums. The prevailing thought was that because of a helicopter’s unique maneuvering capabilities the craft could safely operate with lower minimums. I had flown these approaches a couple of times and they seemed to work well.

The Copter ILS approach used the existing ILS, but allowed helicopters a DH of 100 feet and an RVR of not less than 1,200 feet. Although this was basically CAT 2 minimums there was no aircrew qualification required. Moreover, pilots were flying below 200 feet without visual reference to runways that did not have CAT 2 certification. So in 2000, (Copter ILS approaches had been flown for years without incident) citing concerns over technical issues such as signal strength and reliability below 200 feet, threshold clearances and lighting, the FAA issued a Notice to Airmen (NOTAM) that terminated the Copter ILS approaches.

Various industry groups worked with the FAA to help re-establish the lower minimums. Today there are Copter ILS approaches; however, they overlay CAT 2 approaches as this solves the technical TERPS issues. They also require special aircrew and aircraft qualification. An example is Ronald Reagan Washington National Airport (DCA) Copter ILS or LOC RWY 1 approach (

Rotor downwash

Friday, November 6th, 2009

Jim Thomas asked, “Are the hazards of a helicopter rotor blast taught to new students?” The answer is sometimes and sometimes not. Being dual rated, I understand the affect the rotor down wash can have on an airplane. As an instructor, it is always something I teach to students.

Wind direction and strength must be considered when hovering near other aircraft. For example, when hovering with a strong right crosswind, leave more room between other objects and left side of the helicopter. The rotor downwash will be very strong on the left side and very weak on the right side. I have had line personnel direct me to park too close to another aircraft that was downwind of the rotor wash. I would just touchdown in a better suited area and explain why once they approach the helicopter.  Some understood, some did not.

However, it’s not just parked airplanes that can get tossed around. I was on a hospital helipad with another helicopter when the other pilot needed to depart. While he was starting up I was busy finishing some paperwork. There were no obstacles and the wind was calm, so the last thing I expected was for him to depart directly over top of my parked helicopter. That’s exactly what he did causing the blades to flex down, and the fuselage to shake. I was sitting in the helicopter with the door open and fortunately was able to get it closed. If I were to guess, he couldn’t have been more than 10 feet above me. I never understood why he did that.

On another occasion, I was hover taxing along the edge of a ramp to parking when I noticed some smaller airplanes rocking a little and in front of me was a pilot with an open door. I moved out toward an empty taxiway and ATC immediately told me I was too close to an active taxiway. I explained why and he said, “Understand, but you can’t say there.”

It’s unfortunate that students are not taught more about this subject. However, many pilots are aware of their prop or rotor blast and act courteously and try to minimize the impact on others. However, some either don’t understand or care. To protect yourself and your aircraft around an airport or heliport, I think the best advice is to always assume you could be subject to a prop blast or rotor downwash.

Bad ideas

Wednesday, October 28th, 2009

There are some things that helicopter pilots do that are just not smart.

For example the pilot of a Robinson R22 Beta landed in a field to pick up some equipment and while he was there he decided to hot refuel. The pilot’s father drove a pickup truck equipped with an auxiliary fuel tank under the rotor disk of the running helicopter to accomplish the refueling. The pilot said he stayed at the controls of the helicopter and a wind gust caused the main-rotor blades to flex down, striking the top of the truck. Although no one was injured, the helicopter rolled to the right and into the truck resulting in structural damage to the helicopter. At the time this happened winds were reported from 170 degees at 18 knots, gusting to 25.

Another bad idea is leaving the cockpit while the engine is running and the rotor system is spinning. That’s how a pilot damaged an Enstrom 280X after landing in a corn field and getting out of the helicopter. In an interview with the NTSB, the pilot stated a gust of wind appeared and the main rotor severed the tail boom.

Another pilot preparing to lift-off in an S76 noticed a “door unsecured” indication on the instrument panel for the left cabin door. He brought the engines to idle and exited the cockpit to check the door. He re-closed the door and returned to the cockpit. However, the door open annunciation came on again. He then left the cockpit two or three times to deal with the door. He did not recall retarding the engine power control levers to ground idle before leaving the cockpit the final time.

The wheel-equipped helicopter started to move as the pilot was returning to the cockpit. He told the NTSB it was moving toward the edge of the elevated helipad. He managed to climb into the cockpit, but before he could regain control, the helicopter was on its side.

I can remember several times getting ready to depart and then realizing that I needed to check or do something. It is very tempting to just friction down the flight controls and get out. However, every time I consider doing that I think of what has happened to other pilots.

Basic autopilots

Tuesday, October 20th, 2009

The majority of single-engine helicopters do not have autopilots installed. The few that do have autopilots (not counting experimental designs) use a series-parallel model. Even a simple two-axis system without a flight director can be somewhat complicated as it will have a series actuator and a parallel actuator for both pitch and roll.

In the case of the Sagem autopilot, the series actuator is known as a SEMA (Smart Electro Mechanical Actuator), the flight control tube is cut and the actuator inserted. SEMAs are fast moving with limited authority (plus or minus 3.5 mm). The parallel actuator is called a trim actuator and is normally attached to one end of the flight control tube.








When the pilot engages the pitch-and-roll switch, the two SEMA actuators (one for pitch, one for roll) provide a SAS (Stability Augmentation System) by making very small rapid movements that enhance stability through rate dampening. When the force trim switch is engaged, the two trim actuators will hold the cyclic control in that position. The trim actuator contains a spring-and-clutch mechanism that provides the force trim. If the pilot moves the cyclic control it will want to return to its original position.

The autopilot’s upper modes allow it to hold heading, a navigational course, altitude, and indicated airspeed. Heading and course are controlled by roll and only one of these can be active at a time. Altitude and airspeed are controlled by pitch and only one of these can be active at a time as well. In both of these modes it is normally the SEMA actuator that controls the rotor system while the trim actuator anchors the flight controls. When a SEMA is operating off its midpoint, the trim motor is activated to move the cyclic in the appropriate direction and amount to cause the SEMA to return to its center position, restoring full authority.

The autopilot computer receives data on airspeed, altitude, heading, and course and compares it to the value selected by the pilot. If there is a deviation, the autopilot computer sends the appropriate signal to the actuators which moves the rotor system in a direction to cancel the deviation. This allows the autopilot to maintain heading or course and altitude or airspeed.

This describes a very basic system. More advanced helicopter autopilots have flight directors, yaw servo actuators, and servo actuators that control the collective. There are also systems that will auto hover.





Due diligence

Monday, September 28th, 2009

In response to my previous blog, Jon S. brought up some very good points. He questioned whether an EMS pilot would climb into the clouds, autopilot or not, if he or she would face an FAA violation for doing so. He is absolutely right as declaring an emergency does not guarantee a pilot won’t be cited with a violation. The FAA has taken the position that if the emergency is caused by the pilot’s action or inaction, then a violation is appropriate. In many cases the NTSB has upheld the FAA’s decision.


So how does this affect an EMS pilot’s decision making process? Well, in all the EMS Part 135 operations manuals I’ve read there is a defined procedure for inadvertent IMC. Basically, it is to climb, contact the nearest ATC, declare an emergency, and perform an instrument approach. In discussing this with other operators, I was told that the local FSDO has taken the position that if a pilot does the appropriate due diligence that they will not pursue a violation.


According to the NTSB, on June 8, 2008, an EMS pilot in Texas aborted a flight because of low clouds and fog encountered en route. The request was then made to a different operator. The second pilot was notified of the flight and performed a weather check for the route of flight. After his weather check, he contacted his company’s Enhanced Operational Control Center (EOCC) to discuss his weather observations and the previous turn down. Both the pilot and EOCC supervisor were observing 10 miles visibility and ceilings acceptable for the flight. At that time, the pilot or the supervisor did not understand the reason the other pilot turned down the flight. The pilot contacted EOCC a second time to discuss that the previous flight had been turned down because of fog. The pilot and the EOCC supervisor again discussed weather observations with the same conclusion, that the restriction to visibility reported by the previous flight was not observed by any official weather reporting station.


The Bell 407 crashed in densely forested terrain killing the pilot, flight nurse, and paramedic. Sheared treetops indicated initial impact occurred with the helicopter’s main rotor blade system in a straight nose-low attitude. It happened in the exact location where the other EMS pilot had encountered low clouds and lost reference to surface lights. The other pilot told the NTSB there were no traffic or weather concerns at the time of his departure. While en route, approximately five miles south of the hospital, at 1,400 feet he encountered wispy clouds. He descended to 1,200 feet and encountered more clouds, continued to descend to 1,000 feet and encountered even more clouds, and finally descended to 800 feet when the visibility decreased rapidly. He stated that he could see to the east but had lost his surface light reference. He turned immediately to the right, towards the freeway system, and was back in good weather. He stated that the low clouds and visibility were very sudden and dramatic.


Whether a potential FAA violation affected the accident pilot’s decisions that night will never be known. This kind of accident happens too often in EMS operations as some pilots obviously underestimate the potential for a CFIT accident. Better training would definitely help. I think climbing is normally the best option, however, Jon’s point is well taken and EMS pilots who could be put in an inadvertent IMC situation need to be sure they perform reasonable due diligence.


Another good question is whether all EMS operations should be flown under IFR. That’s coming up next.

Stuck pedal

Monday, September 14th, 2009

For a helicopter pilot, one of the more difficult anti-torque system failures to deal with is when the tail rotor thrust becomes fixed or limited to a certain amount. This could happen if something jams or blocks the pedals or the associated linkage.

In flight, the pilot needs to determine at what position the pedals became stuck. In a counterclockwise turning rotor the more power a pilot is using, the more left pedal input is required. In this case, the left pedal is often called the power pedal. Should something jam the pedals during a high power take off or at maximum cruise speed, the tail rotor will be producing a lot of thrust.

The following illustrates the challenges of performing this type of emergency landing. As the pilot slows the helicopter to attempt to land, the helicopter approaches its most efficient airspeed (normally about 60 knots). The pilot must reduce power to prevent the helicopter from climbing. This would normally require adding right pedal, but since this is not possible the nose will start to yaw left and if airspeed gets too slow the helicopter will start spinning. The only way to stop the left yaw or spin is to add power, but that makes the helicopter climb and that’s not good because the pilot needs to get close to ground to land.

Some instructors have different techniques to land with a stuck left pedal. One method is to approach the longest runway available at cruise speed. This keeps power high and the helicopter pretty much in trim. Since the nose is trying to turn left, the tail wants to move right so finding a runway with a right crosswind will help the vertical fin oppose the left turning motion. Once over the runway, slowly start to decelerate with aft cyclic. As the helicopter’s airspeed decreases the pilot will need to reduce power. Lowering the collective should be done as carefully as possible as the nose will begin to yaw left. As the airspeed continues to drop below 60 knots the airflow over the vertical fin will at some point no longer be able to prevent the helicopter from spinning. The good news is that as the helicopter continues slowing below 60 knots more power is needed. Timing is critical as the pilot needs to keep adding power to prevent the helicopter from spinning, but can’t add too much power or the helicopter will climb. If all goes well and the pilot is able to get the helicopter to a very low hover with little or no left spinning, he or she will have the best chance to put it on the ground without rolling over.

A stuck right pedal makes it a little easier to land because in this case the pilot needs to keep power low. A common low-power landing maneuver in a helicopter is called a running landing. Since hovering requires more power, the pilot would touchdown on a flat smooth surface (a runway for example) with forward speed allowing the helicopter to slide to a stop. It must be performed carefully and is a maneuver that student pilots practice.

Different helicopters and situations will require different procedures. For example, in a clockwise turning rotor the same concepts apply, however the yawing direction and pedal inputs are reversed, as the right pedal is the power pedal. When provided, the manufacture’s recommended procedure should be followed.

Loss of tail rotor thrust

Thursday, August 27th, 2009

In a conventional tail rotor system, a complete loss of tail rotor thrust can happen from an internal drive system failure or if an object contacts the tail rotor and damages the blades or gearbox.

A complete loss of thrust from a drive failure is the easier of the two emergencies for the pilot to handle. In flight (airspeed at least about 60 knots) the pilot will experience a yaw to the left or right (it depends of which direction the rotor turns) that is not correctable with pedal input. The airflow passing over the vertical fin will prevent the helicopter from spinning and in this situation the helicopter can most likely be flown to a suitable landing area. Landing without a tail rotor thrust requires an autorotation. When the throttle is closed and the engine stops applying torque, the need for tail rotor thrust goes away. It’s important to keep the helicopter into the wind to prevent sideways movement during touchdown. Collective pitch should be added carefully because friction in the transmission can have a tendency to turn the fuselage. If the helicopter starts sliding sideways it could easily roll over.

In a hover or with low airspeed a tail rotor drive failure requires quick action. The helicopter will immediately begin spinning and the pilot will need to close the throttle and perform a hovering autorotation. A failure low to the ground is normally recoverable; however, for pilots performing high hovers (utility helicopters doing lift work for example) it is much more dangerous. In cases where this has happened some pilots have survived some have not.

Loss of tail rotor thrust resulting from an object striking the tail rotor is very serious. Many times the damage causes such an imbalance that the tail rotor assembly and gearbox will break free from the tail boom. The loss of weight at that long of a moment arm will cause the CG to shift too far forward. In addition to issues resulting from the loss of tail rotor thrust, the helicopter will pitch down and the pilot most likely will not have sufficient aft cyclic movement to recover. When this happens in cruise flight or a high hover the results are normally severe aircraft damage with a high potential for serious or fatal injuries. When pilots in a low hover (EMS accident scenes for example) hit something with the tail rotor the damage to the helicopter can be severe as well, but the potential for human injury is low.