Technique Archive

Downwind takeoffs and the inherent danger involved

Wednesday, March 25th, 2015

Humans like to push limits. Many have found themselves coasting into the next gas station on fumes, or worse, on the side of the highway. Sadly, this is the same mindset we can fall in to with downwind takeoffs. “I had no problem with a 5 or 6 knot tailwind takeoff last time,” or “I’ve taken off with a 10 knot tailwind. I don’t know why another 5 knots would hurt anything.” You get the point. “Permissible” downwind takeoff limits have often been debated. After all, the only thing two helicopter pilots can agree on is what the third one is doing wrong.

Our self-rationalization can get us in trouble in a hurry. What was a 5 knot tailwind takeoff one day will build progressively until you “accidentally” find out just what that tailwind limit is! I’m not implying that a 3 to 5 knot tailwind takeoff will get you hurt or killed. What I am saying is don’t fall prey to that “I’ll just go a little more this time” mentality that has been known to find its way inside helicopter cabins. It exists and sadly I see it more frequently than I care to admit.

THE MECHANICS

If a picture is worth a thousand words a diagram is worth a thousand explanations (or at least one). Let’s take a look at the mechanics of downwind takeoffs from a technical, yet practical explanation with a basic graphic representation.

Looking at this generic diagram we see three different helicopters each with a certain amount of power being used depending on the airspeed of the helicopter or the relative wind the blades are utilizing. At first sight of the diagram it should remind you of a basic power curve diagram and the fact that our wonderful machines are the only vehicle known to man that take more power to go slower. The power required curve could represent TQ (torque) required for a turbine helicopter or MP (manifold pressure) required. You will see at the bottom of the power required curve we have the “bucket-speed” or the speed at which we get the greatest airspeed for the smallest amount of power required. This “bucket-speed” area should be familiar as it is normally the best autorotative speed range as well. Looking at Helicopter #1 we see a helicopter at or near max power while in a 0-airspeed hover; in or out of ground effect, it makes no difference for this explanation. Granted, it will not always take max power to hover but consider Helicopter #1 at or very near max power for this explanation. Following along with the example helicopters you will see that helicopter #2 now has 15 knots of forward or headwind airspeed and the amount of power required is substantially less than the power required for that 0-airspeed hover. This concept in and of itself is no surprise (or shouldn’t be) to even the most novice students. It is helicopter #3 where we can get into trouble!

Looking at helicopter #3 we see that we have 15 knots of reward or tailwind airspeed. Looking at the power required we see that it is a mirror image of the power required for helicopter #2. It takes the same amount of power, in theory, to hover with a 15 knot tailwind as it does a 15 knot headwind. If you do this bring your tap shoes because you will be dancing on the pedals. (For the sake of aerodynamic argument tail rotor authority and increases in power required with use of the tail rotor are excluded from the equation.) Another way to look at this explanation is that the blades don’t care where the 15 knots of wind is coming from; in essence, with a 15 knot tailwind you could visualize the retreating and advancing blades (as you know them to be) have essentially traded places. I’m certainly not telling you to make a habit of hovering with a tailwind! A host of factors dictate why you shouldn’t, including loss of tail rotor effectiveness issues; yaw stability; longitudinal stability issues due to wind getting under (or over) large stabilizer surfaces; and potential TOT and compressor stall issues in turbine machines.

So, if we have a 15 knot tailwind as seen with helicopter #3 and we commence a downwind takeoff the rotor system is starting with a minus 15 knots of “support,” and therefore must outrun the tailwind and lose the translational lift that it had while stationary. Guess what? That takes more power! Essentially by taking off with this 15 knot tailwind you must use the power necessary to reach the power required area of a 0-airspeed helicopter as we described with helicopter #1. At this point you have a ground speed of 15 knots but the rotor system is experiencing a forward relative airflow of zero; you are getting no help from translational lift, and soon the helicopter will begin to descend. Remember where you are at this point; at or near max power. With the helicopter sinking you add more power, which increases the need for tail rotor robbing you of even more power. This is why I referenced “at or near max power” above. If you were faced with this situation, heavy, and in less than ideal performance conditions you may not have enough power and pedal to get you “over the hump” of the zero airspeed point. This dangerous and often overlooked downwind takeoff condition sets the table for a hazardous cycle.takeoff cycle

While many have fallen prey to pushing the limit with the low fuel light in their car, one must realize that pushing the limit with downwind takeoffs can lead to disastrous results. We must resist the temptation to gradually increase our accepted risk level regarding downwind takeoffs. Obviously with the right power margin and ideal conditions taking off with a certain amount of tailwind speed gradient is possible and can be made safely. It is human nature that we must avoid.

As always, I may be alone, but I doubt it. What say you?

The multiengine height-velocity diagram

Friday, February 6th, 2015

The last two blogs provided great explanations of the height-velocity diagram as it pertains to single engine helicopters. So, let’s now take it a little further into the multiengine helicopter realm.

Just as with singles, you will typically find a H-V diagram for multiengine helicopters in the flight manual. However, unlike the singles, the H-V diagram for the multi is to insure a safe landing OEI (one engine inoperative), and not from an autorotation. Furthermore, whether or not the H-V diagram even applies is dependent on how well the aircraft can perform OEI. This performance is defined in a series of categories. If the multi is full-time Category B (as are all singles), or a part-time Cat B, then a H-V diagram limitation will apply; whereas, if Category A it will not. Basically, Cat A is where OEI performance is so good that the H-V is not applicable. Comparing three very different multiengine helicopters to highlights these differences.

The BO105CBS is full-time Cat B, with marginal OEI performance. Even in ideal conditions (light weight and low density altitude), it can barely hold altitude on one engine. Varying airspeed from Vy just a couple knots results in a descent. Approach and departure profiles AEO (all engines operating) need to be such that a quick transition can be made in accordance with the H-V diagram, in the event of an engine failure.

The Bell 412 is an example of a multi that can be operated Cat A or Cat B, depending on the weight, altitude, and temperature. At lower weights, altitudes, and temperatures it will have good enough OEI performance to qualify as a Cat A aircraft. However, in most day-to-day operations it is typically a Cat B aircraft, which means the H-V diagram would apply.

 

multi hv

Bell 412 H-V diagram

 

The AgustaWestland 139 is a true Cat A aircraft, although as with many other Cat A aircraft it is possible to find conditions that will push it into Cat B. The AW139 was largely designed to operate Cat A, in an offshore petroleum support environment with a high useful load (passengers, cargo, and fuel). It is capable of landing and taking off from helipads, while carrying up to 15 passengers, with Cat A performance.

 

AW139 height-velocity chart

AW139 H-V diagram

 

So, what is Cat A?  Cat A is where the aircraft has adequate performance capability for continued safe flight in the event of an engine failure, no matter when that failure occurs. While single engine and Cat B multiengine helicopters have no such assurances, the Cat A aircraft is able to ensure that a safe and normal landing can be made OEI at an airport or heliport.

In the event of an engine failure, different types or categories of helicopters dictate different courses of action in order to do the same thing: preserve rotor RPM. No matter the helicopter and its’ number of engines, Nr is the wing and it must be maintained. The single must obviously enter an autorotation. The Cat B multi must fly at or above Vy (best rate of climb OEI) in order to maintain or increase altitude, and then fly to an area where a safe landing can be made. During takeoff and landing while close to the ground and below Vy, an engine failure in a Cat B will likely result in a forced landing. Though not as dire as an autorotation, it is more of an event than the Cat A helicopter. The difference with the Cat A is that engine failure doesn’t dictate a forced landing. In the event of an engine failure during takeoff, a Cat A has the ability to either return to and safely stop at the takeoff area or to continue takeoff, climb and establish forward flight. In the event of an engine failure during landing, the Cat A can either land at the intended landing area or abort the approach and reestablish forward flight. Unlike Cat B, there is no exposure to the possibility of a forced landing, hence no H-V diagram.

(These views and opinions are my own and do not necessarily reflect the views of Era.)

Maximum performance takeoffs and judgement calls

Wednesday, January 21st, 2015

Ed note: In the last post we covered the mechanics of the Height-Velocity Diagram. Here author Maria Langer discusses an application of its use. 

This past summer, I was part of a helicopter rides gig at an airport event. There were three of us in Robinson R44 helicopters, working out of the same rather small landing zone, surrounded on three sides by parked planes and spectators. We timed our rides so that only one of us was on the ground at a time, sharing a 3-person ground crew consisting of a money person and two loaders. Yes, we did hot loading. (Techniques for doing that safely is fodder for an entirely different blog post.) The landing zone was secure so we didn’t need to worry about people wandering into our flight path or behind an idling helicopter.

The landing zone opened out into the airport taxiway, so there was a perfect departure path for textbook takeoffs: 5-10 feet off the ground to 45 knots, pitch to 60, and climb out. It was an almost ideal setup for rides and we did quite a few.

One of the pilots, however, was consulting a different page of the textbook: the one for maximum performance takeoffs. Rather than turning back to the taxiway and departing over it, he pulled pitch right over the landing zone, climbed straight up, and then took off toward the taxiway, over parked planes and some spectators. Each time he did it, he climbed straight up a little higher before moving out.

I was on my way in each time he departed and I witnessed him do this at least four times before I told him to stop. (I was the point of contact for the gig so I was in charge.) His immediate response on the radio was a simple “Okay.” But then he came back and asked why he couldn’t do a maximum performance takeoff.

It boggled my mind that he didn’t understand why what he was doing was not a good idea. The radio was busy and I kept it brief: “Because there’s no reason to.”

The Purpose

The Advanced Flight Maneuvers chapter of the FAA’s Helicopter Flying Handbook (FAA-H-8083-21A; download for free from the FAA) describes a maximum performance takeoff as follows:

A maximum performance takeoff is used to climb at a steep angle to clear barriers in the flightpath. It can be used when taking off from small areas surrounded by high obstacles. Allow for a vertical takeoff, although not preferred, if obstruction clearance could be in doubt. Before attempting a maximum performance takeoff, know thoroughly the capabilities and limitations of the equipment. Also consider the wind velocity, temperature, density altitude, gross weight, center of gravity (CG) location, and other factors affecting pilot technique and the performance of the helicopter.

This type of takeoff has a specific purpose: to clear barriers in the flight path. A pilot might use it when departing from a confined landing zone or if tailwind and load conditions make a departure away from obstacles unsafe.

The Risks

This is an “advanced” maneuver not only because it requires more skill than a normal takeoff but because it has additional risks. The Helicopter Flying Handbook goes on to say:

In light or no wind conditions, it might be necessary to operate in the crosshatched or shaded areas of the height/velocity diagram during the beginning of this maneuver. Therefore, be aware of the calculated risk when operating in these areas. An engine failure at a low altitude and airspeed could place the helicopter in a dangerous position, requiring a high degree of skill in making a safe autorotative landing.

And this is what my problem was. The pilot had purposely and unnecessarily decided to operate in the shaded area of the height velocity diagram with passengers on board over an airport ramp area filled with other aircraft and spectators.

Height Velocity diagram for a Robinson R44 Raven II. Flying straight up puts you right in the “Deadman’s Curve.”

Height Velocity diagram for a Robinson R44 Raven II. Flying straight up puts you right in the “Deadman’s Curve.”

Seeing what he was doing automatically put my brain into “what if” mode. If the engine failed when the helicopter was 50-75 feet off the ground with virtually no forward airspeed, that helicopter would come straight down, likely killing everyone on board. As moving parts came loose, they’d go flying through the air, striking aircraft and people. There were easily over 1,000 people, including many children, at the event. My imagination painted a very ugly picture of the aftermath.

What were the chances of such a thing happening? Admittedly very low. Engine failures in Robinson helicopters are rare.

But the risks inherent in this type of takeoff outweigh the risks associated with a normal takeoff that keeps the helicopter outside the shaded area of the height velocity diagram. Why take the risk?

Just Because You Can Do Something Doesn’t Mean You Should

This all comes back to one of the most important things we need to consider when flying: judgment.

I know why the pilot was doing the maximum performance takeoffs: he was putting on a show for the spectators. Everyone thinks helicopters are cool and everyone wants to see helicopters do something that airplanes can’t. Flying straight up is a good example. This pilot had decided to give the spectators a show.

While there’s nothing wrong with an experienced pilot showing off the capabilities of a helicopter, should that be done with passengers on board? In a crowded area? While performing a maneuver that puts the helicopter in a flight regime we’re taught to avoid?

A responsible pilot would say no.

A September 1999 article in AOPA’s Flight Training magazine by Robert N. Rossier discusses “Hazardous Attitudes.” In it, he describes the macho attitude. He says:

At the extreme end of the spectrum, people with a hazardous macho attitude will feel a need to continually prove that they are better pilots than others and will take foolish chances to demonstrate their superior ability.

Could this pilot’s desire to show off in front of spectators be a symptom of a macho attitude? Could it have affected his judgment? I think it is and it did.

Helicopters can perform a wide range of maneuvers that are simply impossible for other aircraft. As helicopter pilots, we’re often tempted to show off to others. But a responsible pilot knows how to ignore temptation and use good judgment when he flies. That’s the best way to stay safe.

The mysteries of the height-velocity curve

Wednesday, December 17th, 2014

Call it what you want; height-velocity curve, dead-man’s curve or even limiting height-speed envelope for those who like sophisticated phrases. The “dead-man’s curve” is probably a carryover from our fixed-wing brethren while the industry generally accepts the simple reference of “H/V curve”. The inside of the curve is the area from which it will be difficult or nearly impossible to make a safe landing following an engine failure if you are in the same conditions depicted with respect to airspeed and altitude.

The H/V (height-velocity) diagram is a staple in the helicopter arena but sadly is often misunderstood by student and instructors alike. So, let’s take a look at what it is and how it is developed.

What is it?

The Height-Velocity diagram (curve) is a chart showing various heights above the ground with a combination of a velocity (indicated airspeed) where successful autorotation and landing is or is not possible. This magical combination of numbers yields two major regions on the chart; the area above the knee and the area below the knee. These areas are what actually plot much of the “curve”.  During initial helicopter certification, test pilots evaluate several characteristics of the helicopter that help determine the H/V curve. These factors include the helicopters initial response to a power loss, steady-state descent performance and power-off landing characteristics and capabilities.

Unknown to many, the development of the H/V curve and its associated number combinations is based on “pilot minimum skill level”. So, in a perfect world this means if the engine fails while I’m going this fast (KIAS) and at this height a pilot at a “minimum skill level” should be able to make a successful autorotation and hopefully some resemblance of a landing.

How do we define the pilot “minimum skill level?” That is a question I and many others can’t answer. Many will agree the current practical test standards are somewhat lacking and aren’t necessarily cultivating the “minimum skill level” necessary.

HVDiagramR44

No cookies for me please

To delve into this quandary let us recap the typical sequence of an autorotation training exercise. The instructor has the student line the helicopter up with the runway so that the power-recovery phase of the autorotation will occur as closely to the runway numbers as possible. Sound familiar? You know what I’m talking about, the “3, 2, 1, roll-off power” etc.

It’s the same thing with a 180-degree autorotation where the student is taught where to “fail” the engine based on tailwind strength and land at the “spot” within the practical test standard. Is there really anything practical about it?  Just what, if an engine failure occurs in the real world and the only spot you have is 600 feet directly below you? Could you get there? Safely? What about engine failures at night time with the same situation, the only place to go is directly below you or just out in front of you. If you remember anything from this article remember this, autorotations are like fingerprints in that no two are exactly the same.

(more…)

Slaying the dragon

Tuesday, August 26th, 2014

Regardless of what helicopter you are flying, whether it’s the Robinson R22, Bell JetRanger, or any helicopter for that matter, you need to be comfortable with autorotations. At our flight school we have broken the auto in to three flights. If you’re a CFI reading this, try it. If you’re the student or certificated pilot looking to get proficient, ask for it.

Start with talking on the ground, sitting in the helicopter, and going through the physical motions. Move the controls the way you would actually respond. If you are the CFI, play the whole thing down (mentally) and don’t let the student get beaten before they even lift off. If you are the client/student try to put past bad experiences with autos behind you.

First Flight: Auto-rotative decent. Climb to at least 3,000 feet. I like even higher. The only thing you want at first is RPM control. There is plenty of time to adjust airspeed. RPM is the constant in most cases. Climb back up and then try adjusting the airspeed all the way through the decent from 30-70 knots, noting what cyclic control movements do to the RPMs. Get comfortable with controlling RPM with mostly cyclic movement. The ONLY thing you want to achieve by the end of this lesson is comfort with RPM and airspeed control in the decent.

Second Flight: I like to start with quick stops from 50 feet and 60 knots, which is very similar to the flare in an autorotation. End this lesson with auto-rotative descents, followed by a flare (quick stop). Join the needles (rotor and engine RPM) very early so it seems just like the two maneuvers put together. By doing this you’ve learned to join the needles at 300 feet AGL, and not in the flare where most over-speeds occur. End this lesson being comfortable with descents and the flare.

Third Flight: Go over all three maneuvers and then combine them all together. Join the needles a little further down the line each time. Don’t be crazy about that; the auto looks the same regardless of where you join the needles.

If you want to accomplish full down autorotations, add a fourth lesson of hovering autos and run-on landings, which will be the same as a touch down from zero ground speed or from 15-20 knots if you are unable to zero out the ground speed.

This should build your confidence and make it fun, regardless of what helicopter you are flying.

Heroism

Friday, December 10th, 2010

I learned to fly helicopters in the early 1980s. Back then I read a story about a helicopter pilot who rescued an airplane pilot who had crashed on the ice of Lake Erie. The helicopter pilot was flying along the shore of the lake in a Hughes 300C when he heard on the radio that the Coast Guard helicopter had turned back because of weather. He decided to head out over the lake and look for the downed pilot.

The traffic-reporting helicopter did not have any navigational radios so the pilot asked the Coast Guard for directional information. Ice had built up on the blades and airframe, and his skids contacted the water a few times when he lost depth perception because of fatigue. After several attempts, in total darkness, he found the pilot. After getting him onboard, he flew back and landed on the shoreline with less than five minutes of fuel remaining. The helicopter pilot was awarded the Avco/Aviation/Space Writers Association Heroism Award.

There is no doubt that his actions probably saved the downed pilot’s life. However, had he crashed while attempting this rescue would he have been viewed as an excessive risk-taker or a hero who tried despite the odds? I wonder in today’s environment of risk assessments and safety management systems if perceptions would have been different?

Eurocopter’s quest for speed

Monday, November 22nd, 2010

In the 1980s, Bell and Boeing Helicopters began developing a twin-turbo shaft military tilt rotor aircraft called the V22 Osprey. Bell then teamed with AgustaWestland to develop a commercial version known as the BA609 and it achieved its first flight in March 2003. During this time the helicopter industry was excited about VTOL aircraft reaching higher speeds. However, Eurocopter was quiet about its plans only saying it had no plans to develop a tilt-rotor aircraft.

On September 6, Eurocopter began test flights of its high-speed, long-range hybrid helicopter concept, which combines vertical takeoff and landing capabilities with fast cruise speeds of more than 220 knots. Called the X3, it is equipped with two turbo shaft engines that power a five-blade main rotor system and two propellers installed on short-span fixed wings. The engines are RTM322s, which power the company’s NH90 military transport. The main rotor gear box is a derivative of the yet-to-be certified EC175 medium size twin helicopter with a modification of two output drives for the propellers.

In cruise flight the rotor pitch is reduced to provide minimal drag and the small wings provide lift. Thrust comes from the propellers. There is no tail rotor so yaw and anti-torque are controlled by a standard pedal configuration that varies the thrust on each propeller separately. The aircraft can be flown like a traditional helicopter until 80 knots, then the main rotor pitch is reduced as the propeller thrust is increased.

According to Eurocopter, the hybrid aircraft will cost about 25 percent more per hour to operate than a conventional helicopter. However, with the increased speed the company points out that when measured in a per passenger/mile basis the operating costs will drop 20 percent. The X3 is currently a technology demonstrator, but Eurocopter says the concepts could be ready for production models in less than a decade.

Tail-boom strikes

Thursday, November 4th, 2010

Some helicopters, like the Robinson R66, have tall masts putting the rotor system high above the tail boom; others, like the MD500, have a more compact design. Engineers take into account flight characteristics of a design when considering the distance between the tail boom and the rotor disk. Even so, tail-boom strikes can and do happen.

One of the more common scenarios is when a helicopter makes a hard landing following an autorotation. Touching down too nose-high on the aft part of the skids can cause a nose-down pitch that instinctively causes the pilot to pull back on the cyclic to counteract it. This action in combination with the fact that the blades are still moving downward can result in the blades contacting the tail boom. An in-flight entry to an autorotation will also cause a nose-down pitch because of the advancing blade seeing a greater reduction in lift than the retreating blade. A pilot who overreacts with sudden aft cyclic will cause the rotor system to flap back while the tail boom is still rising, which can lead to the blades to come in contact with the tail boom. In-flight blade-to-tail boom strikes are normally fatal.

Strong wind gusts can also create a problem. A tail-boom strike can happen as rotor rpm gets lower and the centrifugal force holding the rotor stiff drops. A helicopter that is starting up or shutting down in high winds or near another hovering helicopter is particularly vulnerable. Manufacturers have used droop stops in teetering rotor systems to support the blades at slow speeds. One design uses spring-loaded droop stops with weights that pull them out of the way when the rotor speed–and related centrifugal force–gets high enough. Even so, many manufacturers and operators have maximum wind speeds for start up and shut down.

Max performance take-off

Friday, October 8th, 2010

A maximum performance takeoff is used to climb at a steep angle to clear barriers in the departure flight path. To perform this maneuver successfully a pilot must consider the wind velocity, temperature, altitude, gross weight, center-of-gravity location, and other factors affecting performance of the helicopter.

The textbook procedure is this: After performing a hover power check to determine if there is sufficient power available, position the helicopter into the wind and begin by getting the helicopter light on the skids. Pause to neutralize all aircraft movement. Slowly increase the collective and position the cyclic to break ground in a 40-knot attitude. This is normally about the same attitude as when the helicopter is light on the skids. Continue to slowly increase the collective until the maximum power available is reached. Keep in mind this large collective movement requires a substantial increase in pedal movement to maintain heading. Use the cyclic, as necessary, to control movement toward the desired flight path and, therefore, climb angle during the maneuver. Maintain rotor rpm at its maximum, and do not allow it to decrease since you would probably have to lower the collective to regain it. Maintain these inputs until the helicopter clears the obstacle then establish a normal climb attitude and reduce power. As in any maximum performance maneuver, the techniques you use affect the actual results. Smooth, coordinated inputs coupled with precise control allow the helicopter to attain its maximum performance. Also, the helicopter will most likely be inside the shaded area of the height-velocity diagram where there is very little energy available to perform an autorotation in the event of an engine failure. Using maximum power would decrease the time the helicopter is exposed to a low energy situation.

However, other pilots I have talked to prefer a slightly different technique. Instead of using maximum power available, use the minimum power necessary to safely climb and clear the obstacle. The theory being that in the event of an engine failure the less power the pilot is using the more rotor rpm will be recoverable to help in the autorotation. Also, demanding high power might increase the probability of a part failure at a critical time. I would be interested in hearing comments on the two theories.

Robinson R66—First flight

Monday, September 13th, 2010

I just spent the last two days flying Robinson Helicopter’s new light turbine helicopter, the R66. Although it is still in experimental category, FAA certification is expected in the next 30 days as Robinson and the FAA work out some final details.

Having a couple of thousand hours in the Bell 206 light turbine series helicopter made for an easy direct comparison. Last year Bell announced that it would cease production of the five-place Bell 206B JetRanger, citing the R66 as one reason. Company founder Frank Robinson’s design goals are not just well-engineered products, but cost effective as well. The R66, the company’s first turbine helicopter, exemplifies this objective extremely well, and after flying it, I think Bell made the right decision.

The R66 is powered by a Rolls-Royce RR300 (model number 250-C300/A1), a new engine based to the proven 250-series engine (same engine used in the 206B). It is mounted below the transmission deck at a 37-degree angle which gives easy access for maintenance. The engine produces 300 shaft horsepower and is derated to 270 shp for a five-minute take off rating and 224 shp for max continuous operation. Starting is simple; igniter switch to enable (a nice feature that allows you to motor the starter without firing the igniters–no more need to pull the igniter circuit breaker); press-and-release the start button (it’s latched so no need to hold it down), at 15 percent N1 push the fuel control in and monitor engine light off and acceleration. At 65- to 67-percent N1 the starter disengages and the generator is switched on.

Picking the R66 up to a hover is smooth and it feels a little bigger and a little heavier than the piston-powered R44, which it is. I flew with Doug Tompkins, Robinson’s chief pilot who did all the experimental test flying on the R66. We were hovering at 64-percent torque and as we approached 60 knots during the take off Doug suggested pulling 100-percent torque. I started raising the collective, before I got to 90 percent the VSI was pegged at 2,000 feet per minute and at 100 percent we were climbing like a banshee. It didn’t take long to feel comfortable with the helicopter and we moved on to autorotations. These were predictable and basically a lot of fun. I did 180-degree, 90-degree, and out-of-ground-effect hovering autorotations to a full touchdown. It is just like the R44, only easier.

Another noticeable feature is comfort; the cabin is eight inches wider than the R44. The cyclic flight control retains Robinson’s T-bar arrangement. Not only does this ease transitioning from the R44 to the R66, but the T-bar is exceedingly comfortable in flight.

There is not doubt this helicopter will do very well. Once again Frank Robinson has found a need and filled it. The agile and turbine-powered R66 will do the jobs that a piston engine simply can’t, such as high-altitude flying. It will also find great acceptance in parts of the world where avgas is hard to get or just not available. And for those operators and contracts that require a turbine engine, the R66 will fit perfectly.

There is a lot more to say about this helicopter so look for a full feature article in an upcoming issue of AOPA Pilot magazine.